
www.manaraa.com

www.manaraa.com

Software Engineering
and Environment
An Object-Oriented Perspective

www.manaraa.com

Software Science and Engineering

Series Editor: Richard A. DeMillo
Purdue University, West Lafayette, Indiana

High-Integrit y Software
Edited by C. T. Sennett

Software Engineering and Environment: An
Object-Oriented Perspective
Phillip C.-Y. Sheu

Software Reuse: Guidelines and Methods
James W. Hooper and Rowena O. Chester

Studies in Computer Science: In Honor of Samuel D. Conte
Edited by John Rice and Richard A. DeMillo

A Continuation Order Plan is available for this series. A continuation order wil l bring delivery of
each new volume immediately upon publication. Volumes are billed only upon actual shipment.
For further information please contact the publisher.

www.manaraa.com

Software Engineering
and Environment
An Object-Oriented Perspective

Philli p C.-Y. Sheu
University of California, Irvine
Irvine, California

Springer Science+Business Media, LLC

www.manaraa.com

L i b r a r y o f Congres s Cata log ing- in -Pub l1ca t io n Dat a

Sheu, P h i l l i p C.-Y .
Softwar e engineer in g an d environmen t : a n ob jec t -o r ien te d

perspec t iv e / P h i l l i p C.-Y . Sheu .
p. cm.

Include s b i b l i o g r a p h i c a l re ference s an d Index .

1. Softwar e engineer ing . 2 . Object -or iente d programmin g (Compute r
sc ience) I . T i t l e .
QA76.758.S475 199 7
005.1—dc21 96-4760 6

CI P

© 1997 Springer Science+Business Media New York
Originally published by Plenum Press, New York in 1997
Softcover reprint of the hardcover 1st edition 1997

10 9 8 7 6 5 4 32 1

Al l rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise,
without written permission from the Publisher

ISBN 978-1-4613-7710-8 ISBN 978-1-4615-5907-8 (eBook)
DOI 10.1007/978-1-4615-5907-8

www.manaraa.com

Preface

The term software engineering has been used extensively in different contexts. In
a broader sense, software engineering encompasses every aspect of software
systems; these include models, algorithms, programming, and management. De
pending on one's interest, different perspectives of software engineering have
been produced: project managers have emphasized managerial aspects of soft
ware products, programmers efficient programming, and computer scientists
modeling and automating the programming process.
This book first introduces a number of software life cycle models and the

basic concepts of object-oriented systems. Subsequently it discusses in more
detail different phases of a software life cycle, with an emphasis on the object
oriented paradigm: "Formal Specification and Verification" (Chapter 3), "Design
Methodologies and Specifications" (Chapter 4), "Programming and Coding"
(Chapter 5), "Program Verification and Testing" (Chapter 9), and "Software
Maintenance" (Chapter 10). Two of the six phases, namely, the requirement
stage and the integration stage, are not covered extensively in separate chapters;
rather in Chapter 1, several approaches to software integration are briefly dis
cussed. It is my understanding that these two stages have been less understood in
the past and more systematic approaches are yet to be developed. Several mana
gerial issues related to software project management are covered in Chapter 12.
Approaches to distributed software development are discussed in each stage
whenever possible.

I cover the following subjects in more detail: "Programming Tools" (Chap
ter 6), "Declarative Programming" (Chapter 7), and "Automatic Program Synthe
sis and Reuse" (Chapter 8). The roles played by the preceding are shown graph
ically in the diagram below. With the aid of software libraries, programming
tools allow a program to be composed with off-the-shelf modules, fully tested by
experts, to increase the productivity of programmers and the quality of the
software produced. Automatic program synthesis, although not a reality yet, can
provide a shortcut from requirements specifications to maintenance. Declarative
programming on the other hand is somewhat less ambitious but may relieve
programmers of many implementation details. These chapters summarize the
current status of such issues. Chapter 11 covers advanced software engineering
environments that span several stages of the software development process; these

v

www.manaraa.com

vi Preface

r-~~--., Automatic Synthesis and Reuse (Chapter 8)
~4-~~~~~-_-~----------------------r--------,

Scope of the book.

include knowledge-based programming environments, visual programming envi
ronments, distributed object-oriented programming environments, component
software services, and concurrent engineering environments. Chapter 12 discus
ses issues of interest to software engineers; these include project management,
fault-tolerant systems, discrete event simulation, and Internet programming.

I wish to thank Drs. C. V. Ramamoorthy, D. Cooke, R. Reynolds, L. J.
Peterson, H. Freeman, T. Kidd, R. L. Kashyap, K. H. Kim, K. C. Tai, F. Calliss,
R. DeMillo, P. Dewan, J. Riedl, R. Gordon, D. Yu, D. Lai, and W. T. Tsai for
carefully reviewing this book and providing me with many insightful comments.

Although I tried my best to make this book an ideal one, I am sure it is not
free of errors, typos, or omissions. I will appreciate it if the reader kindly lets me
know of them. Suggestions for improvements will be deeply appreciated as well.

P. c.-Y. Sheu
Irvine, California

www.manaraa.com

Contents

Chapter 1. Software Life Cycle Models . 1
Problems 6
References 6

Chapter 2. Object-Oriented Concepts and Modeling 9
2.1. Basic Concepts of the Object-Oriented Paradigm. 10

2.1.1. Object, Class, Inheritance, and Message 10
2.1.2. Object Identity. 10
2.1.3. Imperative and Active Objects. 11
2.1.4. Object-Oriented Libraries. 11
2.1.5. Object-Oriented Paradigm. 11
2.1.6. Examples............................... 12

2.2. Object Modeling. 18
2.3. Advanced Object Models. 24

2.3.1. Real-Time Object Models. 24
2.3.2. Reflective Object-Oriented Models. 24
2.3.3. Agent-Based Object Models. 25

Problems 25
References 27

Chapter 3. Formal Specification and Verification. 29
3.1. First-Order Logic. 29

3.1.1. First-Order Language 30
3.1.2. Semantics: Model and Interpretation 30
3.1.3. First-Order Theory.. 31
3.1.4. Theorem Proving. 31
3.1.5. Resolution Principle 31

3.2. Logic and Database . 33
3.3. Formal Specification in Z 35
3.4. Object-Oriented Logic System. 41
3.5. Algebraic Specifications. 46
3.6. Petri Nets . 48

vii

www.manaraa.com

viii Contents

3.7. Verifying Specifications. 52
3.8. Final Remarks. 60
Problems 60
References 62

Chapter 4. Design Methodologies and Specifications 65
4.1. Design Concepts. 65
4.2. Process Description Languages and Design

Methodologies. 67
4.2.1. Data Flow Diagrams and Design

Methodology . 67
4.2.2. SSL.................................... 72
4.2.3. HIPO . 73
4.2.4. INTERCOL . 73
4.2.5. Others.................................. 76

4.3. Dynamic and Functional Modeling. 77
4.4. Object-Oriented Design Methodologies. 80
4.5. Design Verification and CASE Tools. 86
Problems 89
References 90

Chapter 5. Programming and Coding. 93
5.1. Object-Oriented Programming Languages. 93
5.1.1. Objects................................. 93
5.1.2. Types. 94
5.1.3. Inheritance.............................. 94
5.1.4. Strongly Typed Object-Oriented Languages . . . 95
5.1.5. Models of Concurrency. 96

5.2. c++ 97
5.2.1. Program................................ 98
5.2.2. Classes................................. 98
5.2.3. Inheritance.............................. 100
5.2.4. Operator Overloading. 103

5.3. SMALLTALK................................... 104
5.4. Distributed Programming Languages. 109
5.4.1. Parallelism.............................. 110
5.4.2. Communication.......................... 110
5.4.3. Synchronization.......................... 111
5.4.4. Partial Failure/Fault Tolerance. III
5.4.5. Primitives for Parallelism. 113
5.4.6. Primitives for Communication and

Synchronization. 114

www.manaraa.com

Contents ix

504.7. Primitives for Partial Failure/Fault Tolerance. . II7
5.5. Communicating Sequential Processes and OCCAM 119
Problems 124
References 127

Chapter 6. Programming Tools. 129
6.1. Object-Oriented Programming for Windows. 129
6.1.1. Simple Project. 130
6.1.2. Object Windows . 133
6.1.3. Sample Program 138

6.2. IDE-An Interactive Programming Environment. 140
6.2.1. File Menu. 140
6.2.2. Edit Menu. 141
6.2.3. Compile Menu. 141
6.2.4. Debug Menu. 142
6.2.5. Run Menu. 142
6.2.6. Search Menu. 143
6.2.7. Option Menu. 144
6.2.8. Project Menu. 144
6.2.9. Window Menu. 145

6.3. X-Window Programming. 146
604. UNIX Network Programming. 154

604.1. Simple Interprocess Communication 155
604.2. Network Interprocess Programming. 157

Problems 163
References 180

Chapter 7. Declarative Programming. 181
7.1. Very High Level Programming :. 181
7.2. Object-Oriented Declarative Programming. 183
7.3. Logic Programming-PROLOG. 190
7.4. COMPOSE-An Object-Oriented Programming
Environment. 194
704.1. Relational Query Languages. 194
704.2. COMPOSE........................... .. . 198

Problems 205
References 206

Chapter 8. Automatic Program Synthesis and Reuse. 207
8.1. Deductive Program Synthesis. 207
8.1.1. Splitting Rules. 209
8.1.2. Transformation Rules . 209

www.manaraa.com

x Contents

8.1.3. Resolution Rules. 210
8.1.4. Induction Hypothesis. 211

8.2. Transfonnational Program Synthesis. 216
8.3. Program Abstraction and Instantiation 217
8.4. Automatic Software Reuse. 220
Problems 227
References 228

Chapter 9. Program Verification and Testing. 231
9.1. Fonnal Program Verification.. 232
9.2. Black Box Testing. 235
9.3. Structural Testing. 235
9.4. Error-Based Testing. 242
9.5. Automatic Test Case Generation. 249
9.6. Testing and Debugging Distributed Programs. 251
9.7. Analysis Tools and Software Metrics. 255

9.7.1. Static Analysis Tools.. 255
9.7.2. Dynamic Analysis Tools. 256
9.7.3. Software Metrics. 257

Problems 258
References 259

Chapter 10. Software Maintenance. 261
10.1. Components of Software Maintenance 261

10.1.1. Configuration Management. 261
10.1.2. Version Management. 262

10.2. Database and Software Maintenance. 262
10.3. Programming Object Bases . 265

10.3.1. Queries.............................. 269
10.3.2. Integrity Constraints 270
10.3.3. Triggers . 270
10.3.4. Views............................... 270

10.4. Program Management. 271
10.4.1. Incremental Testing. 271
10.4.2. Integrity Control . 273

10.5. Reverse Engineering and Design Recovery. 274
10.5.1. Desire Version 1.0. 277
10.5.2. MicroScope.......................... 277

Problems 279
References 279

www.manaraa.com

Contents xi

Chapter 11. Advanced Programming Environments. 281
11.1. Knowledge-Based Programming Environments.... 281

11.1.1. KBEmacs............................ 281
11.1.2. CHI................................. 283

11.2. Visual Programming Environments. 284
11.3. Distributed Object-Oriented Programming Sys-

terns... 286
11.4. Component Software . 288
11.5. Programming Environments for Concurrent Engi-

neering. 290
References 290

Chapter 12. Other Selected Topics . 293
12.1. Project Management. 293

12.1.1. Manager's Role..... 293
12.1.2. Defining the Problem. 294
12.1.3. Proposals............................ 294
12.1.4. Design.............................. 295
12.1.5. Programming......................... 295
12.1.6. System Testing . . . 296
12.1.7. Acceptance........................... 296
12.1.8. Operation............................ 296
12.1.9. Models.............................. 297

12.2. Fault-Tolerant System Design. 298
12.2.1. N-Version Programming. 299
12.2.2. Recovery Blocks. 300
12.2.3. Recovery Blocks versus N-Version Program-

ming................................ 303
12.2.4. Designing with Fault Trees. 304

12.3. Discrete Event Simulation. 305
12.4. Internet Programming. 308
References 316

Index. 319

www.manaraa.com

1

Software Life Cycle Models

The production process of a software system is usually called the life cycle of the
system. To describe software life cycles, a number of models have been pro
posed. The earliest may be the waterfall model.' It describes the software life
cycle of a software system in terms of the following steps:

1. Requirements. The requirements of the system are informally summa
rized and analyzed; feasibility of the requirements is assessed, required
resources are projected, etc. Requirements must be verified by the client.

2. Specifications. In this step requirements for the system are formalized in
terms of inputs, outputs, and functionalities, which define desired rela
tionships between inputs and outputs. In a concurrent system, it is some
times necessary to specify coordination aspects among different compo
nents. In both cases requirements specifications are verified (to eliminate
inconsistency, prove that a solution does exist, etc.).

3. Design. The architecture of the system is determined, usually through a
block diagram. The system, if it is reasonably complicated, in most cases
consists of a number ofcomponents, calledmodules. Relationships among
modules are defined. Functionalities of the modules are further specified.
This step is repeated until no further decomposition can be done. The
process is a typical instance ofstepwise refinement.2As for requirements, a
design specification must be verified (to be consistent, efficient, etc.).

4. Implementation. Each module is coded and tested. Implementation can
be either top-down, bottom-up, or a mix of both. In the top-down ap
proach, top-level modules are implemented before lower level modules.
In the bottom-up approach, lower level modules are implemented first. A
program can be formally verified against its requirements, or it can be
tested by test cases. To test a module in the top-down approach, lower
level modules are assumed to exist and be present as stubs,. in the
bottom-up approach, upper level modules are assumed to exist and be
present as drivers.

5. Integration. Independently implemented modules are integrated in this
step. Again, this step can be either top-down, bottom-up, or a mix of

www.manaraa.com

2 Chapter 1

both. In the top-down approach, top-level modules are integrated and
tested before lower level modules. In the bottom-up approach, lower
level modules are integrated and tested first. Note that in the integration
step, drivers or stubs are gradually replaced by real modules. The result
of this step should be a functional system.

6. Maintenance. As the system is being used, changes may have to be
made, and the system may have to be maintained. Common maintenance
types include corrective maintenance (maintenance due to residual
bugs), perfective maintenance (maintenance due to upgraded require
ments), and adaptive maintenance (maintenance due to environmental
changes).

The waterfall model is not a linear model; that is feedback is included
between two successive steps (see Figure 1.1). Feedback paths are included in the
model so that whenever difficulties are found in one step, it may be necessary to
go back to the previous step to make corrections. It should be noted however that
feedback from the maintenance stage to any previous step may be needed when
changes are made to requirements, specification, design, or implementation.

A weakness of the waterfall model is that very often the final product does
not address the client's expectations. This is due to the fact that specifications can
be very involved and difficult to follow for an untrained person. Many times the

Figure 1.1. The waterfall model.

www.manaraa.com

Software Life Cycle Models 3

client approves the specification even though he/she does not have a clear picture
of the final product. Once a discrepancy is found in a later stage of the life cycle,
the cost involved in making changes to the specification and redoing the design
and implementation can be very high. These limitations of the waterfall model
are addressed in the rapid-prototyping model.3 The initial requirements stage of
this model differs from the waterfall model. Here clients are provided with a
prototype to have an idea of how the finished product looks. This prototype then
goes into a rapid modification stage where it is worked on until it meets the
client's needs and expectations. This aspect of the process gives it its descriptive
name.

Prototypes are constructed rapidly, and they only roughly resemble the
finished product. The only purpose of these prototypes is to communicate the
needs of the client to the developer. This eliminates some of the problems
associated with the waterfall model, since the client no longer has to understand
the specifications in order to visualize the final product. It should be noted that a
prototype is completely discarded after serving its initial purpose. When the
actual product is developed, its design and implementation are accomplished in a
well thought out manner, with a great deal of attention to detail, unlike the
prototype. The original prototype merely aids the design and development pro
cess.

Even though rapid prototyping seems like a better way of doing things, it
has its own difficulties. One of the things that this process eliminates is a rigorous
specification stage. This gives rise to situations where a client can claim that the
product delivered is not the one that was promised. This could not be the case in
the waterfall model, where detailed specification documents would prove other
wise.

Another shortcoming is that the client sees the prototype being developed
and assumes that the final product will be developed just as quickly. This raises
some false expectations about the amount of time required to develop the final
product that the developer cannot possibly meet. It is therefore a good idea for
the developer to inform the client of the degree of functionality of the prototype
as well as the time and effort required to develop a fully functional product.

Another important application of the rapid-prototyping model is its use as a
risk minimization tool. One type of risk reduced by rapid prototyping involves
using new ideas. If a new algorithm is tested on a real system, the cost of failure
can be quite high. Associated with this cost is the cost of development, which in
terms of time and effort renders using new ideas feasible near the final stages of
development. A good solution is to construct a prototype first, then test its
feasibility in a simulated environment. This is no guarantee that the idea will
work in the real environment, but chances of success are greatly improved, and
the risks of development are minimized.

The idea of minimizing risk is also one of the main components of the spiral

www.manaraa.com

4

Review Commitment
partition

Plan next phases

Cumulative
cost

Progress
through
steps

Develop, vertly
next-level product

Chapter I

Figure 1.2. The spiral model. Reprinted from Ref. 4 with permission. © 1988, IEEE.

model of software development4 (see Figure 1.2). The spiral model describes the
software process as an iteration over four phases of activities. Each iteration
involves a progression through the same sequence of steps, which take each
portion of the product through a series of elaboration from conception to code.
The phases of each cycle are

1. Identification of objectives to be achieved by the portion of the product
under consideration

2. Alternative ways of implementing that part of the system

3. Constraints that affect choices among alternatives

4. Evaluation of alternatives with respect to objectives and constraints

5. Development and verification of the next level of the product

www.manaraa.com

Software Life Cycle Models 5

6. Review of the current cycle and development of a plan for the next cycle

Developing a plan for the next cycle can include partitioning the process
into separate activities for subsequent development, where partitions may corre
spond to work on different aspects of the project components to be developed by
different groups, individuals or both.5 The spiral model adds the concepts of risk
analysis, prototyping, and iteration to the basic framework provided by the water
fall model. Alternatively this model can be viewed as a waterfall model with each
phrase proceeded by risk analysis. The risks are ascertained by the rapid-proto
typing method discussed earlier. This type of risk analysis is useful in minimiz
ing risks that involve things like timing constraints (e.g., real-time systems) and
testing new ideas and algorithms (as explained earlier). The spiral model is
considered by some to be a better model than the previously described models
because of its ability to include multiple paradigms in the process modeLS This
makes these models suitable for describing a wide range of software processes.
The spiral model on the other hand has development as an iteration of four phases
of activities corresponding to the four quadrants in Figure 1.2. These phases
combine different approaches, including specification-driven (i.e., waterfall) and
prototype-driven (Le., rapid prototyping) development. While the spiral model
represents a significant advancement over the other models, it still has its limita
tions. This approach works well if the project is confined to one organization;
however it is less useful in describing software development under external
contract.4

The contractual model of software development, a more general approach,
is capable of describing software development across a wide variety of organiza
tional environments, methods, and application domains.5 The contractual ap
proach views every task in a software project as a contract, that is, a well-defined
package of work that can be performed independently by a contractor for a
client.6 Contract specifications can include an acceptance test for contract deliv
erables, schedules, requirements for standards that must be met, obligations to
make periodic reports, etc. The key point is that the contractor is free to decide
how to fulfill the contract specification. This freedom includes the ability to let
subcontractors perform all or part of the work and so on recursively. One such
contractual approach to software development is 1STAR.7 The 1STAR provides
independent contract databases for the execution of each contract. It also pro
vides additional services, such as contractual operations for assigning contracts,
amending or canceling them as necessary, accepting their deliverables, and com
municating formal reports to them. The contractual method creates a dynamic
hierarchy of contracts reflecting the organization of the contract, and at any level
of the hierarchy, the development process can be implemented using any avail
able methods.
At any stage of the hierarchy, project implementation as a whole may

www.manaraa.com

6 Chapter I

involve the waterfall model with Contractor A and the rapid-prototyping model
with Contractor B, while their subcontractors may use still other methods. This
gives maximum flexibility in implementing the project and models. Another
advantage is that the software is developed at every stage in a manner that best
suits that particular stage. This increases the efficiency of development as a
whole, unlike the previous models where the development process is inflexible.

One way of evaluating any software development process is to examine
what happens when things do not work as planned, which happens very often in
real-life situations. In the ISTAR model this situation arises when one of the
subcontractors is unable to meet contract constraints. In this case the contractor
can do one of two things. The first is to solve the problem within the constraints
of the contract that has to be met. This may involve finding additional resources
to staff a new subcontract or canceling all existing contracts. The second option
is to escalate the problem. The client now has the same options. The essential
point is that problems are handled at the organizational level with the competence
and responsibility to correct them. Thus the question of where in the hierarchy to
resolve a problem has a very natural solution with this approach.

Other process models do exist; a partial list of references include Refs. 8
11. A way of comparing such models is found in Ref. 12.

PROBLEMS

1. One view of a software development process is that it is built incremen
tally. Each piece is integrated into a partially completed system one by one until
done. Develop a life cycle model of this view.

2. Another approach to software development is to build the system first,
then revise it until the client's requirements are satisfied. Develop a life cycle
model for this process.

3. Discuss how the waterfall model and the rapid-prototyping model can be
combined.

4. Give an example software system that can best be guided by the rapid
prototyping model. Do the same for the spiral model.

REFERENCES

I. Royce, W. W. "Managing the development of large software systems: concepts and techniques."
Proc. WESCON (Aug. 1970).

www.manaraa.com

Software Life Cycle Models 7

2. Wirth, N. "Program development by stepwise refinement." Communication. ACM 14:4, 221
(1971).

3. Tanik, M. M. and Yeh, R. T., eds. IEEE Computer (Special Issue) 22:5 (May 1989).
4. Boehm, B. W. IEEE Computer 21:5,61 (May 1988).
5. Williams, L. G. "Software process modeling: a behavioral approach." Proc. ofthe Tenth Interna

tional Conference on Software Engineering (Singapore, 1988).
6. Dowson, M., ed. "Iterations in the software process." Proc. of the Third International Software

Process Workshop (IEEE Computer Society Press, 1987).
7. Dowson, M. "ISTAR and the contractual approach." Proc. of the Ninth International Conference

on Software Engineering (Monterey, CA, 1987).
8. Gilb, T., Principles of Software Engineering Management (Addison Wesley, Reading, MA,
1988).

9. Currit, P. A., Dyer, M., and Mills, H. D. IEEE Transactions on Software Engineering SE-12.1:3
(Jan. 1986).

10. Lehman, M. M. and Belady, L. A., eds. Program Evaluation: Processes of Software Change
(Academic Press, 1985).

II. Henderson-Sellers, B. and Edwards, J. M. Communications of the ACM 33:9, 142 (Sept. 1990).
12. Davis, A. M., Bersoff, E. H., and Comer, E. R., IEEE Transactions on Software Engineering.

14:10, 1453 (Oct. 1988).

www.manaraa.com

2

Object-Oriented Concepts and Modeling

There are two major conceptual models for software systems: the procedure
oriented model and the object-oriented model. In the procedure-oriented model,
a system consists of a number of processes (programs). A program consists of a
number of subprograms (procedures and/or functions), and each subprogram
owns and manipulates some local data; together they may share some global
data. A program is a sequence of subprogram activations and data exchanges
arranged by a control algorithm. If the system has multiple programs, data may
be transferred among them asynchronously or synchronously through messages
or shared variables.

Object-based computation in general is based on three concepts: object,
message, and class. 1.2 An object is essentially an encapsulation of a set of private
data, and it can be accessed or modified only by activating its interface methods.
In most cases an object corresponds directly to a real-world entity, and it is
logically meaningful. It accepts messages that ask it to access or modify data. In
an object-based system, each object is an instance of some class, and classes can
be arranged in a hierarchy, with the property that operations implemented at
higher levels of the hierarchy can be automatically recognized at lower levels. A
program is a sequence of messages that access the objects.

The choice between the procedure-oriented model and the object-oriented
model may not be obvious sometimes. The procedure-oriented model follows a
top-down, or algorithmic, approach toward problem solving. The object-oriented
model however attempts to model structures and behaviors of domain objects
before a solution is composed in terms of local behaviors. It is therefore bottom
up. Many think that the choice of a model should be made according to the nature
of the problem to be solved.

Chapter 2 introduces some fundamental concepts of the object-oriented
paradigm (Section 2.1). Section 2.2 summarizes some basic constructs for object
modeling; these are conceptual tools that can be employed to describe real-world
enterprises in a structured fashion. Section 2.3 introduces some advanced object
models.

9

www.manaraa.com

lO

2.1. BASIC CONCEPTS OF THE OBJECT-ORIENTED
PARADIGM

Chapter 2

Reference 3 provides a detailed survey of the fundamentals and design
issues of the object-oriented paradigm. This section summarizes some key results
from that survey.

2.1.1. Object, Class, Inheritance, and Message

Objects are collections of operations that share a state. An object consists of
variables, called instance variables, that represent the state. An object also con
tains operations, called methods, that determine its interface and its behavior.
Variables inside the objects are accessible only through the object's methods.
Communications among objects are achieved via messages. If object A must
activate method M of object B, it sends a message to B asking it to activate M;
object B subsequently executesM and returns the result (if requested) via another
message.

Classes serve as templates from which objects are created. The similarity
between classes and objects is striking. However there is one major distinction:
The instance variables of objects represent actual variables; in classes however,
instance variables are instantiated. These class-instance variables are private,
which means that only the methods of the class can access and change the
variables. Though variables of a class cannot be changed directly, the operations
of the class have full access to the variables.
The methods of a class are sometimes called the behavior of the class. The

object-oriented paradigm allows programmers to reuse behaviors of classes when
new classes are defined, so that new classes inherit operations and instance
variables from their parent class, thereby adding new operations and new in
stance variables.

2.1.2. Object Identity

An object's identity is logically distinct from its value-the name given
to the object by the programmer-from the address or location at which the
object resides. Support of object identity requires operations that allow an identi
ty to be manipulated. A basic operation is testing for object identity. Testing for
object identity can be viewed as a special case of testing for object equivalence.
Object equivalence can be defined in many ways, such as having the same type or
class, some specific common property (e.g., people of the same age), or observa
tional equivalence (having the same behavior in all possible contexts of observa-

www.manaraa.com

Object-Oriented Concepts and Modeling 11

tion). Unique identifiers are one kind of object identity (determined at object
creation).

2.1.3. Imperative and Active Objects

Imperative objects are passive unless activated by a message. In contrast
active objects can be executing when a message arrives. Active objects have the
following modes: dormant (there is nothing to do), active (executing), or waiting
(for resources or the completion of subtasks). Message passing among active
objects may be asynchronous.

2.1.4. Object-Oriented Libraries

Programs in procedure-oriented languages are action sequences. In contrast
object-oriented programs are collections of interdependent components, each
providing service specified by its interface. The object-oriented program struc
ture directly models interactions among objects of an application domain.

Libraries are repositories of software components that serve as reusable
building blocks for software development. Libraries in procedure-oriented lan
guages have actions (procedures) as their software components. Components of
object-oriented libraries are classes from which objects may be created. Object
oriented libraries contain hierarchically organized collections of classes whose
patterns of sharing are determined by inheritance. The behavior encapsulated in
classes can be reused in two ways: by creating instances and by subclasses that
modify the behavior of parent classes.

2.1.5 Object-Oriented Paradigm

The object-oriented paradigm can be viewed as a paradigm of program
structure in terms of the

• Characteristic program structures supported by the paradigm

• Characteristic structure of its execution-time state

• Balance between state transition, communication, and classification mech
anisms

In contrast to the shared-memory model of procedure-oriented program
ming, object-oriented programming partitions the state into encapsulated chunks,
each of which is associated with an autonomous, potentially concurrent, virtual
machine. Each chunk is responsible for its own protection against access by

www.manaraa.com

/2 Chapter 2

unauthorized operations. In a concurrent environment, objects protect themselves
against asynchronous accesses, thereby removing the synchronization burden
from processes that access the object's data. Object-oriented programming em
phasizes object management and application design through such mechanisms as
classes and inheritance, while distributing programming emphasizes concurren
cy, implementation, and efficiency. There is also a strong affinity between object
oriented and distributed architectures.

2.1.6. Examples

As a very simple example of the object model just introduced, let us assume
that class matrix-2 defines a two-dimensional matrix. The objects a, b, and c are
of type matrix-2. To compute the following expression:

a := b + c;

The user sends a message add:c to the object denoted by b, where add is a
method inherited from a more general class matrix. When the object receives the
message; it, in cooperation with the object denoted by c, creates a new object that
is the result of adding matrices. Then the new object name is sent back to the
caller. This mode of computation is illustrated in Figure 2.1. Note that because
communication is among the objects and each object is an active entity, a high
level of concurrency can be achieved.

Create

Create

Main

Figure 2.1. An object as a computational entity.

Class matrix 2

www.manaraa.com

Object-Oriented Concepts and Modeling

Example 2.1. (Ref. 4) For simplicity we assume that a factory has two de
partments: Stock and Production. The responsibility of the Stock depart
ment is to maintain a set of SSI parts that are needed for any product the
company can make. The responsibility of the Production department is to
assemble each product as cheaply as possible at a specified level ofquality.
The factory accepts product requests on a first-come, first-serve basis; a re
quest is served (i.e., manufactured) ifall the resources needed are available.
For simplicity the organization of these departments is as follows:

1. The Stock department has only one agent.
2. The Production department consists of two managers: the as

sembler planner and the process scheduler. Assembling a prod
uct consists of a sequence of jobs performed by different types
of work cells; each work cell may have different tools and an
industrial robot. Given the identifier of a product, the task of the
process planner is to obtain an assembly plant for the product;
the task of the process scheduler is to allocate appropriate re
sources (i.e., work cells) to assemble the product.

The overall organization of the factory is shown in Figure 2.2.
A natural way ofmapping this factory into an object-based system is

to represent each department as an object. It is also natural to represent the
assembly planner, the process scheduler, every customer order, every
resource, and every product as separate objects. The object-based system
can be programmed to resemble the actual processing of a manufacturing
order. Let us assume the following process, depicted in Figure 2.3.

Customer 1

Customer 2

Customer 3

13

••
•

Figure 2.2. The factory's internal organization.

Stock

Process
planner

www.manaraa.com

14

Parts available Parts Missing

Resource busy

Manufacturing product

Chapter 2

Figure 2.3. Processing a customer's request.

A customer submits an order that specifies the name and the quantity ofthe
SSI part to be assembled. On receiving the message, the Production
department creates an orderobject for the request, determines the SSIparts
needed, and consults the Stock department to see if all the SSI paths are
available. If some parts are missing, the Stock department issues an order
for supply, and the order is placed on a waiting list. Otherwise the SSI parts
are reserved, and the Production department determines the resources
(e.g., machines, robots) required and their availability through messages
communication. If some resources are not available, the request is placed
on the waiting list. Otherwise the necessary resources are allocated; a setof
job objects are generated and sent to the appropriate resource objects; and
the assembly process begins. After the product is assembled, the resources
are released. The Production department then examines the waiting queue
from the top to see if any request can be served due to the recent release of
resources. This process is then repeated.

Now let us examine the internal functions of the production man-

www.manaraa.com

Object-Oriented Concepts and Modeling

ager. Associated to these function is a method called product_request.
A customer activates this method by sending the production manager a
message specifying the method as the selector and the name as well as
the quantity of the product as the arguments.

On receiving the message, the production manager creates an order
object and the assembly planner is asked to define the necessary SSI
components and process sequence needed for the product. The assembly
planner then requests the Stock manager and the process scheduler to
determine if the factory is currently able to manufacture the product. If
all required SSI components and resources are available, the process
scheduler reserves the appropriate work cells and develops the flow path
for the assembly process. In case some resources or SSI components are
not currently available, the process scheduler queues the order object.

We can go one step down to see how the assembly planner deter
mines the job sequence of the assembly process. We assume that each
product that can be manufactured by the factory is implemented as an
object class. Associated with each product class is defined a set of
methods. For example the method retrieve_assembly_plan develops
an assembly plan for the product, and the method tools_required re
ports the tools required to assemble the product.

Consequently when a product is identified, a message with the
selector retrieve_assembly_plan is sent from the assembly planner to
the product object, and the assembly process for that object is returned
as the result. Since many classes may be very similar in that they share
many methods (e.g., tools_required), it is possible to organize product
classes into families and let a class object enlist the services of a super
class object whenever it is called on to execute methods it shares with
other classes.

Now assume that in our automatic factory there is a third depart
ment, Service. The function of the Service department is to test and to
repair faulty products returned by customers for service. We assume
that the Service department has several service experts; naturally we can
implement the Service department and each service expert as an object.

To identify a fault associated with a malfunctioning product, a
service expert object is intended to work in conjunction with a tester that
can manipulate and observe a malfunctioning product. The diagnostician
accepts from the tester a description of an observed malfunction, pre
scribes tests, accepts the results, and ultimately identifies faulty compo
nents responsible for the malfunction. More likely the service expert uses
information about a product's intended structure (a product's part and its
interconnection) and its expected behavior (equations, rules, or produc
tions that relate the product's inputs, outputs, and state).

15

www.manaraa.com

16 Chapter 2

Because a service expert works independently of any particular
product, the required information must be stored independently. A natu
ral way of achieving this is to include the design knowledge (intended
structure and expected behavior) and diagnostic rules as part of the class
definition. A typical product is shown in Figure 2.4. In general terms
this product can be described in terms of adders and multipliers. The
adders and multipliers can be individually described in terms of their
subcomponents, and so on until we reach the level of gates. A full adder
is essentially a one-bit adder with carry-in and carry-out, and it is
usually used as one of n elements in an n-bit adder. Figure 2.5 shows its
design. The adder has three inputs and two outputs, two XOR-gates (Xl
and X 2), two AND-gates (AI and A 2), and an OR-gate (01)'

Of course the structure of any product can be elaborated on and
described at gate level. However most of the existing diagnosis expert
systems prefer to have structural abstraction, which means that much of
structural detail is suppressed. The most common example is structural
hierarchy as described earlier. The advantage of structural abstraction
for diagnosis is that it is often possible to diagnose faults in a hierarchi
cal way. For example it is possible to diagnose the product in Figure 2.4
at a higher level of abstraction to determine the major subcomponents in
which the fault lies (e.g., the adder AA). This subcomponent can then be
diagnosed to identify the fault at the next lower level (e.g., the full
adder), and so on until the lowest level failure is determined (e.g., Xl'S
output stuck at off). By conducting the diagnosis hierarchically, the
number of components under consideration at anyone time is reduced;

D74

Figure 2.4. A typical product.

www.manaraa.com

Object-Oriented Concepts and Modeling

Full adder

XOR1 ~

r-1 XOR2 i

ADD2~
OR1 .~Y A001 I

~

Figure 2.5. A typical adder.

074

•••
Figure 2.6. An object representation of 074.

17

www.manaraa.com

18 Chapter 2

- 1

I

,
t
G

II I I
, Jill-

I I
I ,- -\

0000
Figure 2.7. Communication channels among different experts.

and even though higher level components are often quite complex, the cost
of test generation remains manageable.

To facilitate abstraction, one possible object representation ofD74 is
shown in Figure 2.6. When aD74 product is diagnosed, the service expert
associated with objectamust identify which subcomponents ofb, c, d, e,f
may be faulty. The service expert then sends the diagnosis requests to
service experts associated with those candidate faulty components, say, b
and c. Likewise b and c determine (concurrently) which of its subcompo
nents may be faulty. This process is repeated until the faulty gates are
identified. Note that at different abstraction levels, the service expertsmust
use different test patterns and diagnostic rules. In all cases a service expert
at one abstraction level (e.g., a) sees only its subcomponents at the next
level and talks only to service experts at the next level. Communication
channels among different service experts are shown in Figure 2.7.

2.2. OBJECT MODELING

Object-modeling techniques are conceptual tools that can be applied to
abstract and formulate real-world things. Most object-modeling techniques ex-

www.manaraa.com

Object-Oriented Concepts and Modeling 19

tend the entity-relationship model (ER model)5 with object-oriented consider
ations. In an ER model, real-world enterprises are described in terms of entities
and associations; entities that share the same structure are grouped into an entity
set, and associations of the same kind are group into an association set. An ER
diagram is a network of nodes (entity sets) whose connections are labeled by
associations. Most object-oriented modeling techniques extend the preceding
with the concepts of generalization, aggregation, and operations. Typically an
object model consists of a number of classes and their associations (relation
ships). Graphically an object diagram consists of a set of nodes (classes) whose
connections are labeled by associations. Example 2.2 gives an informal introduc
tion to the object-modeling techniques proposed in Ref. 6.

Example 2.2. Figure 2.8 shows the class diagram of a windowing
system. In the object modeling technique (OMT), an object diagram can
be a class diagram (which shows classes and their relationships) or an
instance diagram (which shows instances of objects and their relation
ships). In Figure 2.8 each object class is depicted as a rectangular box
divided into three parts: the name of the class, its attributes, and its
operations. Classes are connected by associations. A superclass and its
subclasses are connected by a special type of association that captures
the is a relationship; such an association (called a generalization asso
ciation) is depicted by a triangle in Figure 2.8. For example a window
can be a scrolling window, a canvas, or a panel; a shape can be a line or
a closed shape, and so on.

Similar to the ER model, an association can be a one-to-one, one
to-many, many-to-one, or many-to-many relationship. An association
connecting two classes can have a bubble at either end, where a solid
bubble designates a many end and a hollow bubble designates a one or
zero end; an end without a bubble designates a one end. One end of an
association may have a diamond (in this case the association is an
aggregation association): in this case each object of the class connected
to the diamond end is an assembly of a set of (zero, one, or many,
depending on the other end of the association) objects of the class
connected to the other end. For example each polygon consists of a
number of points, where the points are ordered. The association between
point and polygon is called vertices, although an association does not
have to be named. As another example, each choice item consists of
several choice entries as possible choices among which one is chosen as
the current choice. A dotted arrow from the association current choice
to the association choices designates a constraint labeled as {subset},
meaning the current choice has to be a member of the choice entries.

Similarly a panel item, once selected by the user, generates (is

www.manaraa.com

20 Chapter 2

Window

x1
y1
x2
y2

display
u'1display
raise
lower

I
Scroillng
window
x-offset
y-offset

scroll

Canvas
cx1
cy1
cx2
cy2

add-element
.------i delete-element

window

I

I Panel I
Iitem name I

Event
notify 1-----1
event action

elements

Shape

color
line width

Panel
item
x

rabel

keyboard
event

Text
item

I

max length
current string

A

string
value

.{.S.U.b.S.~~

g~~i~~t choices

Choice
entry

I

I I

Button I Choice
string Item
depressed

Polygon I
draw

A

Closed
shape

fill color
fill pattern

I
Ellipse
x
y
a
b

r
d
'-ra-w---1 vertices {ordered}

Point
x
y

Line
x1
y1
x2
y2

draw

Text I Scrolling I
window canvas
string

insert
delete

Figure 2.8. The class diagram of a windowing system. Reprinted with permission from Ref. 6 ©
1991, Prentice-Hall.

www.manaraa.com

Object-Oriented Concepts and Modeling

associated with) a notify event, although many panel items can be asso
ciated with the same event. The association between panel and panel
item is a one-to-one association once the name of the panel item is
specified. The box associated with the association between panel and
panel item is a qualification, and it can usually be read as indexed by.
Finally the attributes and operations of a superclass are automatically
inherited by its subclasses. Although not shown in Figure 2.8, ternary
associations can be expressed as a diamond whose three vertices are
connected to the three classes involved.

21

Example 2.2 illustrates some basic constructs in OMT for object modeling:
classes, associations, generalization, and aggregation. Figure 2.9 summarizes the
semantics of some of the most commonly used notations in OMT. Most object
modeling techniques provide a rich set of tools for capturing the semantics of
real-world enterprises. Some additional constructs include the following:

Multiplicity: The many end of an association can be labeled by a nonnega
tive integer, an interval, a set of integers, or a set of intervals to identify the
possible number of objects that can be associated with the object(s) at the
other end of the association.

Join Classes: A class with more than one subclass is called a join class. If
some subclasses overlap, the hollow triangle of the related generalization
association is replaced by a solid triangle.

Role: Either end of an association is called a role, and it can be labeled by a
role name.

Class Descriptors: Attributes and operations of a class that belong to the
class only and are not shared by its instances can be listed with a special
symbol.

Candidate Keys: A set of attributes from the two classes connected by a
binary association can be appointed as a candidate key to identify uniquely a
link (which is defined to be an instance of an association) between two
object instances.

Constraints: Constraints can be expressed as predicates and imposed on
attributes, parameters (of operations), and link attributes. Constraints may
also be imposed between attributes, parameters, and link attributes.

Figure 2.10 illustrates some of the preceding and provides brief explana
tions.

www.manaraa.com

22

a
A

x
B

Chapter 2

Type:

Semantics:

One-to-one association.

Every object of A can be associated with one and only one object
of B with association x.

b r---..;.;A:....-----1r....-__
x

t--...:B:....-----1
Type:

Semantics:

Many-to-one association.

One or more objects of A can be associated with the same object
of B with links of type x; however every object of A can only be
associated with one object of B with a link of type x.

c
__...;.A.;...._-+- X ,--..::;B----.,

Type:

Semantics:

One-to-many association.

Every object of A can be associated with one or more objects of B
with links of type x; however every object of B can only be associated
with one object of A with a link of type x.

d

_----'-A-'--_r x
__,---'B"------1

Type:

Semantics:

Many-to-many association.

Every object of A can be associated with one or more objects of B
with links of type x; one or more objects of A can be associated with
the same object of B with links of type x.

e

Type:

Semantics:

Generalization.

Class A is a superclass of class A1 ... An.

An
• •

Type: Aggregation.

Semantics: Each class A object consists of one class A1 object..... and many class
An objects.

Figure 2.9. Some commonly used notations in OMT.

www.manaraa.com

Object-Oriented Concepts and Modeling

a

A 5,17,9],12 8

a1 b1
a2 x $b2
a3 b3

23

{candidate key: (a1,b1)}

b

Semantics: Either five, seven, eight, nine, or twelve objects of class
A can be associated with many objects of class 8. The
attribute b2 of class 8 is a class attribute. The tuple (a1,b1)
uniquely identifies a pair of objects (from class A and class
8 respectively) associated by an association of type x.

c

Semantics: Class 8 and C are subclasses of class A;
Class 81 and D are subclasses of class 8;
Class C1 and D are subclasses of class C;
and class D inherits from both classes 8 and C.

Y
A +subset v

8

a1
~

b1
a2 b2
a3 x b3

{a1 <= 10} {a1 + b1 <= 50 } {b1 <=50}

Semantics: Many objects of class A can be associated with many objects of
class 8 with association of type y. Many objects of class A can be
associated with one or zero object of class 8 with association type x;
the role of a class A object in the association is u and the role of a
class 8 object (if exists) in the association is v. The value of attribute
a1 of each class A object is less than or equal to 10; the value of
attribute b1 of each class 8 object is less than 50. The association set
x is a superset of the association set y.

Figure 2.10. Some examples of additional modeling constructs.

www.manaraa.com

24

2.3. ADVANCED OBJECT MODELS

Chapter 2

This section discusses some advanced object models that have been intro
duced in the literature; these include real-time object models, reflective object
models, and agent-based object models.

2.3.1. Real-Time Object Models

Models for real-time systems traditionally focus on system processing and
its timing characteristics. For example research on real-time databases empha
sizes maximizing the number and/or value of transactions completed by certain
deadlines, based on some correctness criteria.7,8 Proposals that incorporate real
time considerations into an object model have been found recently in the real
time system community. For example the MARS model9 requires all data values
to be included in messages with fixed validity times. The CHAOS project lO

describes the need for multiple, time-constrained value assignments to objects.
Time capsules,II an abstraction proposed for continuous media systems, also
associates validity intervals with data values.

More recently Callison proposed the concept of a time-sensitive object. 12

Specifically the value of such objects are time-sensitive: As time passes the value
of the object is expected or even required to change. Examples of such time
sensitive objects for real-world applications include the position of aircraft in an
airspace and temperature during a nuclear or chemical reaction. Callison classi
fied time-sensitive objects into three categories: single-interval transient, multi
level, and immutable. Immutable objects have constant values (they do not
change). A single-interval transient object is created, remains in the system for a
short time, then disappears without changing. Most other objects fall between
these two extremes, and these are classified as multi-interval objects: They per
sist for some finite time and may change during their lifetime, Multi-interval
objects can be further classified into two groups: sporadic and periodic. The
value of a periodic object is normally reevaluated at fixed temporal intervals;
each new value remains valid for a fixed length period. Sporadic objects are
allowed or expected to change but not at precisely regular times,

2.3.2. Reflective Object-Oriented Models

According to Ref. 13, "Reflection is the process of reasoning about and
acting on the system itself." A language is considered reflective if it uses uniform
structures to represent data as well as control entities. 14 Reference 15 describes a
reflective object-oriented system as a collection of objects and a collection of
invariants about the object states. Invariants are classified into two groups: deri
vations that define the value of a computed data element and constraints that

www.manaraa.com

Object-Oriented Concepts and Modeling 25

assert possible relationships between data elements. The two types of invariants
correspond to deductive laws and integrity constraints in a database (see Section
3.2). In a reflective process the database reflects on the contents of its present
state, identifies invariants that are not satisfied by the present state, and devises a
set of transitions that transfer the database into a consistent state.

Reference 16 describes a reflective object-oriented language that allows an
object to extend its behavior by dynamically composing multiple secondary
behaviors, with the object's primary behavior defined in the class. This reflective
feature is accomplished by using metaclasses that support shadow objects to
implement an object's secondary behaviors. Similar features have also been
implemented in other object-oriented languages, such as ACTOR17 and ObjV
Lisp.18 Reference 19 claims that reflection is especially beneficial in concurrent
systems that require customization according to system organization or applica
tion program characteristics for achieving efficiency and robustness.

2.3.3. Agent-Based Object Models

Abstractly, agents are executable threads, i.e., an agent is a process execut
ing some program.20 Typically an agent has input and output ports and a set of
methods that actually perform the agent's functions. 21 Most agents are dormant
until awakened by messages sent to them. The agent's methods specify what to
do when messages are received at the input ports and which messages to send out
at the output ports. Preconditions (triggers) can be used to specify when a
particular action should be taken (e.g., when messages have been received at all
three specified input ports.) In those cases when the agent has to be awakened at
certain time intervals, a predicate for waking up the agent may be specified; this
predicate need not depend on receiving messages, and it can be as simple as
stating the time elapsed before the agent must wake up. When an agent wakes up,
all actions whose preconditions are met are executed in the order they are listed.
In addition an agent can have state variables. Extensive work has been reported
on the specifications of multi-agent systems.22.23

PROBLEMS

1. Construct an object model for the file system of your favorite operating
system (UNIX, DOS, etc.).

2. Construct an object model for circuits consisting of electronic gates
(e.g., AND gates, OR gates, inverters, flip flops) connected by wires.

3. Construct an object model for the structure of a university.

www.manaraa.com

26 Chapter 2

4. The following object model, taken from Ref. 6, describes the structure
of automobiles. Translate it into English.

Problem 4. Object model describing the structure of automobiles.

5. Build an object model for the factory discussed in Example 2. I.

6. A derived class is a class that can be derived from some existing
classes. Extend the object-modeling constructs discussed in this chapter to in
clude derived class.

7. Extend the object-modeling constructs discussed in this chapter with
n-ary associations (i.e., associations which connect n classes). Is it always pos
sible to convert an n-ary association into a set of binary associations without
losing any information?

8. A derived association is an association that can be derived from attri
butes of some existing classes. For example in a spatial database, the association
to-the-left-of can be derived from two objects' locations. Extend the object
modeling constructs discussed in this chapter to include derived associations.

9. Is it possible to transform associations in an object model into classes
without losing any information? Why or why not?

10. Discuss the impact of any change that could be made to object classes
(e.g., adding/deleting attributes/operations, adding/deleting sub-/superclasses,
etc.) to an object model. It is possible to develop an incremental maintenance
algorithm for an object model? Why or why not?

www.manaraa.com

Object-Oriented Concepts and Modeling

REFERENCES

27

I. Blair, Gallagher, Hutchion, and Shepherd, eds. Object-Oriented Languages, Systems and Appli
cations (Wiley, New York, 1991).

2. Goldberg, A. Smalltalk-BO: The Language and Its Implementation (Addison Wesley, Reading,
MA,1983).

3. Wegner, P. ACM SIGPLAN Notices 25:6 (June 1990).
4. Ramamoorthy, C. V., and Sheu, P. CoY. IEEE Expert 3.3, 9-17 (fall 1988).
5. Chen, P. P. S. ACM Transactions on Database Systems 1.1, 9-36 (Mar. 1976).
6. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-Oriented Modeling

and Design (Prentice Hall, New York, 1991).
7. Abbott, R., and Garcia-Molina, H. "Scheduling real-time transactions: a performance evalua
tion." Proc., 14th International Conference on Very Large Databases (Morgan Kaufmann, Palo
Alto, CA, 1988).

8. Haritsa,1. R., Linvy, M. J., and Carey, M. J. "Earliest deadline scheduling for real-time database
systems." Proc., IEEE 12th Real-Time Systems Symposium (1991).

9. Kopetz, H., Damm, A., Koza, c., Mulazzi, M., Schwabl, W., Senft, c., Zainlinger, R. IEEE
Micro 9-1, 25-40 (Feb. 1989).

10. Bihari, T., Gopinath, P., and Schwan, K. "Object-oriented design of real-time software." Proc.,
IEEE Real-Time Systems Symposium (1989).

I I. Herrtwich, R. G. "Time Capsules: an abstraction for access to continuous media data." Proc.
IEEE 11th Real-Time Systems Symposium (1990).

12. Callison, H. R. "A periodic object model for real-time system." Proc., IEEE International
Conference on Data Engineering (1994).

13. Yonezawa, A., and Watanable, ACM SIGPLAN Notice 24:4, 50-54 (April, 1989).
14. Ibrahim, M. H., and Cummins, F. A. "KSL: a reflective object-oriented programming language."

Proc., International Conference on Programming Languages (Oct. 1988).
15. Etzion, O. "An alternative paradigm for active databases." Proc., IEEE International Conference

on Data Engineering (1994).
16. Kaiser, G. E., Hseush, W., Lee, J. C., Wu, S. F., Woo, E., Hilsdale, E., and Meyer, S. "MeldC: A
reflective object-oriented coordination language." Technical Report CUCS-001-93 (Dept. of
Computer Science, Columbia University, New York, 1993).

17. Ferber, J. In Metalevel Architectures and Reflection (Maes, ed.) (North-Holland, 1988).
18. Ferber, F. "Computational reflection in class-based object-oriented languages." Proc., ACM

OOPSLA (New York, 1989) 317-326.
19. Masuhara, H., Matsuoka, S.,Watanabe, T., Yonezawa, A. "Object-oriented Concurrent reflective
languages can be implemented efficiently." Proc., ACM OOPSLA (ACM, New York, 1992).

20. Ciancarini, P. ACM Transactions on Software Engineering and Methodology 2:3, 203-209 (July
1993).

21. Lim, W., and Verzulli, J. SPIE 1831; Mobile Robots VII (1992) 285-296.
22. Szczerbicki, E. International Journal on Systems Science 24:11, 2117-2134 (1993).
23. Singh, M., Huhns, M., and Stephens, L.IEEE Transactions on Data and Knowledge Engineering
5:5,721-739 (Oct. 1993).

www.manaraa.com

3

Formal Specification and Verification

Once requirements are fully understood, it is important to have them documented and
verified. This stage is critical, since noonewants to waste hundreds ofemployeehours
developing a software package that does not function as expected. Requirements
specificationcanbe done in terms ofthe logical components involved, theirrespective
inputs, outputs and desired relationships, and constraint to be imposed. States and
possible state transitions can also be incorporated into a requirements specification; in
this case the requirements specificationmay beexecutable. Indeed some requirements
specification languages are executable (e.g., Petri net; see Section 3.6).

Although there are informal requirements specification languages (e.g.,
RSL),l a formal specification attempts to eliminate the ambiguity or uncertainty of
an informal requirements specification language. Another advantage is that a
formal specificationmay prove to be internally consistentwithout conflicts. In some
cases a formal requirements specification can be proved to be complete, in the sense
that a solution can always be derived from the set of functions provided (e.g.,
algebraic specification; see Section 3.5). However compared with informal specifi
cation languages, formal requirements specification languages can be restrictive in
terms of expressive power and difficult to learn.

Chapter 3 begins with a brief introduction to first-order logic and its applica
tion to data definition (Sections 3.1 and 3.2). Based on these, Chapter 3 describes
some formal requirements specification languages, including two logic-based
specification languages, namely, Z (Section 3.3) and the object-oriented logic
system (Section 3.4), a number of algebraic specification languages (Section 3.5),
and a graphical specification language, namely, Petri net (Section 3.6), which is
suitable for specifying the coordination aspects of concurrent processes. Section
3.7 discusses some verification processes that can be applied to formal require
ments specifications. Section 3.8 includes some final remarks.

3.1. FIRST-ORDER LOGIC

Logic is just a formal system. Any formal system relies on an object lan
guage, a semantics or interpretation of formulas in that language, and a proof
theory. For a detailed presentation, see Refs. 2 and 3.

29

www.manaraa.com

30

3.1.1. First-Order Language

Chapter 3

The object language we use is first-order language: lowercase letters represent
constants, predicates, andfunctions; uppercase letters representvariables (X,Y,7" . ..).
The symbols~ (implies), V (or), A (and), and - (not) are used as logical connec
tors. The universal quantifier V allows facts about all objects in the universe without
enumerating each one; the existential quantifier 3 allows an object to be asserted to
exist with certain properties without naming the object. A term is defined to be a
constant, a variable, or a function. A literal is defined to be a predicatep(T1 , ••• , Tn)
or its negation -p(TI , .•• , Tn)' Finally a well-formedformula (wff, or formula, in
short) is defined either by a literal, by connecting or quantifying other wffs. Closed
wffs do not contain free variables: they contain quantified variables only.

Two special forms ofa wff are sometimes needed: in thePrenex normal form,
all quantifiers are placed in front of the wff; in the Skolem normalform, all existen
tial quantifiers are eliminated by replacing variables they quantify with adequate
functions of other universally quantified variables in the Prenex normal form.
Formulas built by connecting formulas with As are called conjunctions; each
component formula is called a conjunct. On the other hand, formulas built by
connecting formulas with Vs are called disjunctions; each component formula is
called adisjunct. Finally a clause is a disjunction ofseveral literals, or a single literal,
all of whose variables are implicitly universally quantified. It can be shown that
every wffcan be put in either the Prenex normal form and the Skolem form andevery
closed wff can be put in the clausal form, i.e., as a conjunction of clauses.

Example 3.1. The following are wffs:

(VX)(bike(X) ~ two_wheel(X))
All bikes have two wheels.
(3 X)(student(X) A likes (X, software engineering)
There exists a student who likes software engineering.
(VS){school(S) ~ (3 T){student-of (T,S) A (V R){[teacher_of (R,S)
~ taught-by (T,R)])}}
Every school has a student who has been taught by every teacher in

the school.

3.1.2. Semantics: Model and Interpretation

An interpretation of a set of wffs defines a nonempty set or domain E in
which variables and constants are given values. Each function symbol is assigned
a value, and each n-ary predicate is assigned the value true or false. Each wff can
be evaluated as true or false by all connectors hand wffs IX and ~ and an
evaluation function v:

www.manaraa.com

Formal Specification and Verification

• v(a) A false = false

• v(a) A true = v(a)

• v(a) V true = true

• v(a) V false = v(a)

• - true = false

• - false = true

31

A model of a set of wffs is an interpretation in which all of the wffs are true;
a set of wffs w' has wffw as a logical consequence ifw is true in all models ofw' ,
noted w' ~ w.

3.1.3. First-Order Theory

A logical axiom is a wff that is true under all interpretations. The first-order
theory uses two inference rules to derive new logical axioms (theorems) from
existing ones. The Modus Ponens inference rules says (/\ A (/\ ~ f2» infersf2'
wheref\ andf2 are wffs. The Generalization inference rule says that -Crt X)f(X)
infers f(a), where a is any constant.

3.1.4. Theorem Proving

Given a set of axioms T, a new theorem (expressed as a wff) F can be
proved by proving that T A -F~ false. This process is referred to as refutation
al theorem proving. Assuming F and all axioms in T are expressed in clausal
forms, resolution refutation theorem proving can be carried out by combining
different clauses of - F and T based on the resolution principal until a contradic
tion (Le., nil clause) is derived. This occurs whenever two clauses to be combined
are unified to the form P and -P, respectively.

3.1.5. Resolution Principle

The resolution principle says two wffs P V Q\ and R V-Q2 can be com
bined (resolved) to be P' V R':

P'VR'

where P, R, R' are clauses, Q\ and Q2 are predicates that are not negated, and

www.manaraa.com

32 Chapter 3

• Q1 and Qz have the same predicate symbol.

• The arguments of Q and the arguments of Qz are unifiable; i.e., there
exists a substitution of variable terms for Q I and Qz, where a variable term
can be substituted by another variable term, a constant term, or a function
term, so that the arguments of Q1 and Qz become identical.

• Let the notation· be used so that given a wff A and a substitution S, A . S
stands for the new wff obtained from A by performing the substitution S of
terms in A. Assume that the substitution for Q1 is SI and the substitution
for Qz is Sz in 2 such that Q1 . SI = Qz . Sz' pi = p. SI' and R' = R . Sz.

Example 3.2. (Ref. 4) Consider the following axioms:

• (VX)(read(X) ~ literate (X»
Whoever can read is literate.

• (VX)(dolphin (X) ~ -literate (X»
Dolphins are not literate.

• (3 X)(dolphin (X) 1\ intelligent (X»
Some dolphins are intelligent.

Assume that theorem F to be proved is

• (3 X)(intelligent (X) 1\ -read (X»
Some who are intelligent cannot read.

T 1\ - F can be organized into the following clausal form:

1. -read (X) V literate (X)

2. -dolphin (Y)-literate (Y)

3a. dolphin (a)

3b. intelligent (a)

4. -intelligent (Z) V read (Z)

The resolution refutation theorem proving process can be summarized
into a resolution refutation tree, as shown in Figure 3.1 below, where
each node contains a clause. Two arcs from two nodes n l and nz come
into the same node n if n l and nz can be combined (resolved) into n,
with the necessary substitution(s) marking the arc(s). An arc without a
mark represents no substitution; i.e., all variables are not substituted.

www.manaraa.com

Formal Specification and Verification 33

Figure 3.1. A resolution refutation tree. Reprinted with permission from Ref. 4. © 1981, Morgan
Kaufmann.

3.2. LOGIC AND DATABASE

Data definition languages were mainly developed for database systems to
describe the structures and semantics of information stored in a database system.
Among existing data models, the relational model may be the most widely
accepted.s In the relational theory, a domain is a (usually finite) set of values. The
Cartesian product of domains D[, ... ,Dn , denoted by D[X Dz . .. X Dn , is the
set of all n-tuples (v[, ... , vn) such that v j E D j , I ::5 i ::5 n. A relation R is a
finite subset of a Cartesian product, which is represented by a table. Each row is
called a tuple and each column, an attribute.

A relational database can be visualized as a collection of relations whose
contents and semantics can be described as a logic system. This is similar to a
PROLOG system (see Chapter 7) without list notations and with a very limited set
of procedural predicates, such as <, >, <=, >=, =, and =1'.6 However, a
relational database is a logic system with integrity constraints, which are axioms
(rules) that state the necessary constraints about the facts and are constantly
enforced whenever facts are added and/or deleted.

A deductive database is a database in which new facts can be derived from
explicitly introduced facts.6 In general a deductive database consists of a finite

www.manaraa.com

34 Chapter 3

set of constants, say, {C1 , ... , cn}, and a set of first-order clauses without
function symbols. Initially a deductive database precludes null values that arise
when there are statements such as (3 X)p(a,x); that is, linked to a in the predicate
p, there is a value, but its precise value is unknown.

If we skolemize the fonnula (3 X)p(a,x), then transfonn it into the clausal
fonn, the clause p(a,w) results, where w is a Skolem constant (i.e., a constant
whose value is otherwise unconstrained).
The general fonn of clauses that represent facts and deductive laws is

PI 1\ P2 1\ ... 1\ Pk ~ R 1 V V Rq

It is equivalent to the clause

-PI V ... V-Pk V R 1 V ... V Rq

The conjunction of the PiS is referred to as the left-hand side of the clause
and the disjunction of the RjS, as the right-hand side. It is assumed that the clauses
are function-free; therefore tenns that are arguments of the PiS and Rjs are either
constants or variables. Whenever any variable on the right-hand side of a clause
also occurs on the left-hand side, the clause is said to be range-restricted. The
following summarizes the possible types of clauses of a deductive database,
depending on the values of k and q, as discussed in Ref. 6:

1. Type 1 (k = 0, q = 1) clauses take the fonn ~ p(TI ' •.. , Tm):

(a) If all TiS are constants, cil , ... , cim' then ~ P(Cil , •.• , cim), which
represents an assertion of a fact in the database. The set of all such
assertions for the predicate p corresponds to a table in a relational
database. The arrow preceding an assertion is generally omitted.

(b) When some, or all, of the TiS are variables, the clause corresponds to
a general statement in the database. For example the clause ~
ancestor(adam,x) states that adam is an ancestor of all individuals in
the database (the database consists only of human beings). Clearly
such data, which are not range-restricted clauses and therefore as
sume that all the individuals in the database are of the same type,
appear very seldom.

2. Type 2 (k = 1, q = 0) clauses take the fonn p(Tl ' ..• , Tm) ~

(a) When all TiS are constants, then P(Cil , ... , cim) ~, which repre
sents a negative fact. Negative statements may seem peculiar, since
relational databases do not contain negative data.

(b) Some of the TiS are variables. This may be thought of as either an
integrity constraint (as a particular Type 3 clause) or as meaning the
value does not exist (null value).

www.manaraa.com

Formal Specification and Verification 35

3. Type 3 (k > 1, q = 0) Clauses take the form PI /\ ... /\ Pk~' Such
axioms may be thought of as integrity constraints. That is data to be
added to a database must satisfy the laws specified by the integrity
condition to be allowed in the database. For example we can specify an
integrity law that states no individual can be both a father and a mother
of another individual. This may be specified as father(X,Y) /\ moth
er(X,Y) ~. If father(jack,sally) is already in the database, an attempt to
enter mother(jack,sally) into the database leads to an integrity violation.
This does not rule out other kinds of integrity constraints.

4. Type 4 (k 2:: 1, q = 1) clauses take the form PI /\ P2 /\ ••. /\ Pk~ R I'
The clause may be considered either an integrity constraint or a defini
tion of the predicate R I in terms of the predicates PI' ... , Pk (such a
definition is a deductive law).

5. Type 5 (k = 0, q > 1) clauses take the form ~RI V R2 V ... V Rq . If all
arguments for R i , i = 1 , ... , n are constants, then we have an indefinite
assertion; that is, any combination of one or more Ri is true, but we do
not know which ones are true.

6. Type 6 (k 2:: 1, q > 1) clauses take the form PI /\ P2 /\ ••• /\ Pk~ R I V
R2 V ... V Rq . The clause can be interpreted as either an integrity
constraint or the definition of indefinite data. An integrity constraint that
states that each individual has at most two parents can be written as
parent(XI,YI) /\ parent(XI,Y2) /\ parent(XI,Y3) ~ (YI = Y2) V (YI =
Y3) V (Y2 = Y3)· As a general rule of deduction, we can have parent(X,Y)
~ mother(X,Y) V father(X,Y). This general law can also be interpreted
as an integrity constraint.

Finally, a clause where k = 0, q = 0 (the empty clause) denotes falsity and
should not be a part of a database. Furthermore we call a clause definite if its
right-hand side consists of exactly one atom (Le., Type lb or Type 4).

All the clause types just defined, except ground facts (Type la), are treated
as integrity constraints in conventional databases. In a deductive database, some
of types may be treated as deductive laws. We distinguish two classes of
databases: definite databases in which no clauses of either Type 5 or Type 6
appear and indefinite databases in which such clauses do appear.

3.3. FORMAL SPECIFICATION IN Z

The Z is a formal specification language based on predicate logic and set
theory.7,8 In Z a system is formally described in terms of a number of schemas; a
schema consists of two parts: the signature and the predicate, presented in the
following form:

www.manaraa.com

36

---Schema Name --
Signature Part

Predicate Part

Chapter 3

Typically a schema describes a state space of the system (the complete state
space can be decomposed into a number of subspaces), the initial value of a state
space, or an operation that can be executed on objects in the system and the
effects of the operation (to the current state). To describe a state space or the
initial value of a state space, the signature of a schema specifies a number of
objects that constitute the state space and some related objects. The predicate
specifies a number of relationships (i.e., invariants) that have to hold among the
objects declared in the signature. To support modularity the signature may con
tain some other schemas. In this case all objects specified in each of these
schemas are included in the current schema.
To describe an operation, the predicate specifies a set of state spaces (in

terms of schemas) involved in the operation and possibly some other objects
(e.g., arguments to the operation, input objects, and output objects), and the
predicate specifies a number of preconditions (if these exist) and postconditions
(if these exist) among the objects involved for the operation.
For schemas of this type, the notion s' (called after state) denotes the value

of the schema s (called before state) after the operation is applied. The notion v'
denotes the value of any object v in a slate space after the operation is applied.
With such postconditions can be established. Note that preconditions do not
involve after states. In addition the notion v? denotes an input object, and the
notion v! denotes an output object. Given a schema S, the schema AS (called
delta S) is defined to be

---AS --
S
S'

The schemas ~S (called xi S) is defined to be the same as the schema AS
with the constraint that the after state of S is the same as the before state. Schema
modularity is also supported in Z by a set of operators that can be used to
combine several schemas into a more complicated schema.

Finally for purpose of illustration, the following notations are employed in Z
in addition to commonly adopted conventions (such as E, U):

• #A, which denotes the cardinality of set A

www.manaraa.com

Formal Specification and Verification

• {x:Tlp}, which denotes the set of all xs of type T such that P is true

• AlB, which denotes the difference between set A and set B

• S: P X, which denotes that S is a set of Xs

• S: F X, which denotes that S is a finite set of Xs

37

Example 3.3 shows a Z specification for a simple computerized library
system.

Example 3.3. (Ref. 8) Consider a computerized library system that
consists of a set of books; a book may be either on loan, reserved (in this
case it is either on loan or kept at the counter), or on the shelves.
Assuming the library does not keep multiple copies of a book and a
book can be reserved by only one person, the following library opera
tions can be performed:

• NewBook, which adds a new book to the library
• TakeOutBook, which checks out a book
• Returns, which returns a book
• ReserveBook, which reserves a book
• BookQuery, which checks the status of a book

The following Z schemas formally describe the computerized li-
brary; comments are preceded by two slashes:

II The Library state space
-----------------------------------Library ------------ -----------------------
books: P BARCODE II assuming BARCODE is a basic type
shelved, reserved, loaned: P BARCODE

books = loaned U reserved U shelved /\
II A book on reserved or on loan is never shelved
shelved n reserved = 0 /\
shelved n loaned = 0

II The initial state space of Library
---------------------------------InitLibrary ---- -----------------------------
Library

shelved = 0 /\
loaned = 0/\
reserved = 0

www.manaraa.com

38 Chapter 3

/ / The NewBook operation
----------------------------------NewBook ----------------------------------
tlLibrary
bcode? : BARCODE II it's an input object

/ / precondition
bcode? f£ books 1\
/ / postconditions
shelved' = shelved U {bcode?} 1\
loaned' = loaned 1\
reserved' = reserved

/ / The TakeOutBook operation
-------------------------------TakeOutBook ---- ---------------------------

tlLibrary
bcode? : BARCODE

/ / Only a book on shelve or on loan can be checked out;
/ / it's a precondition
bcode? E (shelved U (reserved / loaned)) 1\
/ / postconditions
shelved' = shelved / {bcode?} 1\
reserved' = reserved / {bcode?} 1\
loaned' = loaned U {bcode?}

/ / The Return operation
------------------------------------Return ------------------------------------
tlLibrary
/ / a number of books can be returned at once
bcodes? : BARCODE

/ / Only a book on loan can be returned;
/ / it's a precondition
bcodes? C loaned 1\
/ / postconditions
shelved' = shelved U {x:BARCODElx E bcodes? 1\ x f£ reserved}
1\
reserved' = reserved / {bcode?} 1\
loaned' = loaned / bcodes? 1\
reserved' = reserved

/ / The ReserveBook operation

www.manaraa.com

Formal Specification and Verification

--------------------------------ReserveBook --------------------------------
/).Library
bcode? : BARCODE
report! : {"ok", "on_shelves". "cur_reserved"} / / an output mes

sage

/ / Only a book in the library can be reserved;
/ / it's a precondition
bcode? E books 1\
/ / postconditions
/ / The following are a number of rules
/ / If the book is on shelves then the librarian is informed
/ / If the book is on loan but not reserved, it's added to the reserved

list
(bcode? E reserved ~ report! = "cur_reserved" 1\ reserved' =

reserved) 1\
(bcode? E shelved ~ report! = "on_shelves" 1\ reserved'

reserved) 1\
(bcode? E loaned/reserved ~ report! = "ok" 1\ reserved'

reserved U {bcode?}) 1\
loaned' = loaned 1\
shelved' = shelved

/ / The BookQuery operation
---------------------------------BookQuery ---------------------------------
/ / The Library state space remains intact after the operation
!,Library
bcode? : BARCODE
report! : {"unknown", "shelved", "reserved". "loaned"}

/ / postconditions
(bcode? fl books ~ report! = "unknown") 1\
(bcode? E shelved ~ report! = "shelved") 1\
(bcode? E loaned/reserved ~ report! = "loaned") 1\
(bcode? E reserved ~ report! = "reserved")

To cover illegal inputs and errors, the following schemas can be
defined and later combined with preceding schemas to complete the
specification:

Define the new type LIBMESS:
LIBMESS : {

39

www.manaraa.com

40 Chapter 3

"operation was successful",
"no multiple copies of books allowed" ,
"barcode does not match any library book",
"some barcodes don't match any library books",
"some barcodes are of books not on loan",
"barcode corresponds to book already on loan"}
-----------------------------------Success -----------------------------------
mess! : LIBMESS

mess! = "operation was successful"

--------------------------------NoMultipIes --------------------------------
ILibrary
bcode? : BARCODE
mess! : LIBMESS

bcode? E books 1\
mess! = "no multiple copies of books allowed"

-------------------------------TakeOutErrors-------------------------------
'1,ubrary
bcode? : BARCODE
mess! : LIBMESS

(bcode? f£ books ~
mess! = "barcode does not match any library book") 1\
(bcode? E loaned ~
mess! = "barcode corresponds to book already on loan")

--------------------------------ReturnErrors--------------------------------
ILibrary
bcodes? : BARCODE
mess! : LIBMESS

(bcodes? k; books ~
mess! = "some barcodes don't match any library book") 1\
(bcodes? k; loaned 1\ bcodes? C books ~
mess! = "some barcodes are of book not on loan")

------------------------------NotLibraryBook ------------------------------
ILibrary
bcode? : BARCODE
mess! : LIBMESS

www.manaraa.com

Formal Specification and Verification

(bcode? ff. books ~
mess! = "barcode does not match any library book")

Now the specification can be completed with the following com-
posite schemas:

NewBook2 .o= (NewBook /\ Success) V NoMultiples
TakeOutBook2 .o= (TakeOutBook /\ Success) V TakeOutErrors
Return 2 .o= (Returns /\ Success) V ReturnErrors
ReserveBook2 .o= (ReserveBook /\ Success) V NotLibraryBook
BookQuery2 := BookQuery /\ Success

Note that when two schemas are combined with a logical operator a
(where a could be /\ or V), the signature of the resulting schema
contains all declarations from the two schemas and the predicate of the
resulting schema contains the predicate of the first schema in parenthe
ses followed by the predicate part of the second schema. For instance
the composite schema NewBook2 is actually:

---------------------------------NewBook2 ---------------------------------
M-ibrary
bcode? : BARCODE
mess! : LlBMESS

((bcode? ff. books /\
shelved' = shelved U {bcode?} /\
loaned' = loaned /\
reserved' = reserved) /\
mess! = "operation was successful") V
(bcode? E books /\
mess! = "no multiple copies of books allowed")

Note that in the predicate part ofNewBook2, either of the two formulas
connected by the V is true, depending on which pre-condition is true.

3.4. OBJECT-ORIENTED LOGIC SYSTEM

41

An object-oriented logic system9 is a logic system that describes the struc
ture and semantics of an object-oriented system. In Section 8.4, it is used as the
basis for an automatic software reuse system.

Formally we define an object-oriented logic system to be a two-level sys-

www.manaraa.com

42 Chapter 3

tern. The first level, or the object level. is a tuple Lo = (O.G0»0.P0)' where 0 is
a first-order object language, Go is an object representation of O. Do is a set of
axioms, and Po is a set of productions. Similarly the second level, or the schema
level. is a tuple Ls = (S.Gs»s), where S is a first-order object language, Gs is an
object representation of S. and Ds is a set of deductive laws.

Consider an object base Go. namely, a set of classes and their associated
methods. We define the first-order schema language consisting of a set of con
stants (beginning with a lowercase letter), a set of variables (beginning with an
uppercase letter), and the following predicates (beginning with a lowercase let
ter) to describe object classes and relations:

• class (a,al ' ... , an) is true if a is the name of a class of objects and the
attributes of each object of class a is a l ' ... , an' The symbol set_of_a
designates the class of all possible ordered sets that can be derived from
the objects in class a.

• a :method (m,dl ' ... , dn) is true if a is a class, m is a method, and the
domain of the ith parameter of the method is di .

• attribute(a,b,c) is true if the attribute b of class a has the domain c, where
c is a set.

• The predicate instance_of(a,b) is true if object a is an instance of class b.
The predicate member_of(a,b) is true if object a is an instance of set b.

Negated predicates in Ls are interpreted by the closed world assumption;
Le., a literal -f is evaluated as true if f is not asserted. The first-order object
language is defined to consist of a set of constants (beginning with a lowercase
letter), a set of variables (beginning with an uppercase letter), an n-place predi
cate symbol m for each n-ary method m (for simplicity we assume that all method
names are distinct), and the following predicates (beginning with a lowercase
letter) to describe objects and relationships among a set of objects:

• The predicate a.m(xl ' ... , xr) is true if the method ofm of some class is
applied to the object a of the same class with the arguments Xl ' .•• , X r of
legal values; it is false otherwise. The predicate is called a method predi
cate.

• The predicate art) is true if t is an instance of class a; it is false otherwise.
The predicate set-of_art) is true if t is an instance of the class set-of_a
(Le., t is a set whose elements are of class a); it is false otherwise.

• The predicate member_of(a,b) is true if the object a is an element of the
set b; it is false otherwise. The notation [HIT], whereH and T are variables

www.manaraa.com

Formal Specification and Verification 43

or constants, designates a set whose first element is H and the rest of the
set is T.

Both a schema-level axiom and an object-level axiom associated with a
method predicatef are expressed in the following form, where e is assumed to be
a well-defined formula assumed to be free of implications for convenience:

e~f

If and only if the following are defined:

The following is true:

If m == 1, this results in f <-> e1•

The Lo and Ls communicate by the predicate instance_of It is assumed
that whenever an assertion instance_of(a,b) is made in Ls• the assertion b(a) is
made in Lo• and vice versa. Despite their appearances Lo and Ls are not PROLOG
(see Chapter 7), since no procedural predicate, such as assignment is defined in
the language.

For simplicity, from now on, we use the notation:

in place of the set of predicates:

class(a,a1 ' ••• , an)
attribute(a,a I,d1)

Furthermore we use the symbol , instead of /\ for convenience.

Example 3.4. Suppose we have an object class called city with only
one attribute, state, whose domain is string, and an object class called
flight with the following attributes:

• source, whose domain is city

www.manaraa.com

44 Chapter 3

• destination, whose domain is city
• fare, whose domain is float

Also assume that we have a class called airline with the following
attributes:

• cs, whose domain is seLof_city
• fs, whose domain is seLof_flight

Associated with the class airline, assume there is a method called
connection that takes two cities as the input and returns a set of flights
that connect the two cities. The structure of this system can be described
as follows, where expressions at schema level and expressions at object
level are separated by a line. The same convention is followed in the rest
of Chapter 3:

class(city,state:string)
class(flight,source:city,destination:cityfare :float)
class(airline,cs:seLof_cityfs:seLof_flight)
airline:method(connection,set_of_flight,city,city.float)
airline:method(cheapest_fare,city,city.float)

airline(A) ~ instance_of(A.cs,seLof_city), instance_of(Afs,set
_of-flight).

A.connection(C,S,T,Fare) <-
member_of(S,A.cs), member_of(T,A.cs),
member_of(F,Afs), (F.source = S), (F.destination = T),
(C = [Fl), (Fare = F fare).
A.connection(C,S,T,Fare) <-
member_of(S,A.cs), member_of(T,A.cs),
member_of(F,Afs), (F.source = S), (3 CI) (seLof-flight(Cl),
A.connection(C] ,F.destination,T,Fare]),
C = [FICl], (Fare = Ffare + Fare1)).
A.cheapest_connection(D,S,T,Fare) <-
A.connection(D,S,T,Fare),
-((3 C) (3 Fare1) (seLof_flight(C), float(Farel), A.connec

tion(C,S,T,Fare]),
(Fare1 < Fare)))

The presence of variables and constants at object level that are structured
objects makes unification at that level a rather complicated task. At first glance
given a predicate c(A) and assuming the structure of c is declared as the predicate
class(c,a t :dt ' ... , an :dn), the predicate can be translated into the following set
of predicates:

www.manaraa.com

Forma/ Specification and Verification

c(A)
attribute_ value(A,a l ,AI)

attribute_ value(A,an,An)

45

where a predicate attribute_value(a,b,c) is true if object a has c as the value of
its attribute b. Now any object expressed as A.ai , 1 :5 j :5 n, can be translated into
Aj" The same rule can be applied recursively if any Ai is a structured object. This
mechanism seems to work well if the type ofA is known exactly. However if cis
object (which means a can essentially be any type of object) or some unknown
attribute ofA is referenced (in the form A.B, for example, where B is a variable),
the preceding mechanism does not work.

In the following, we extend the conventional unification algorithm to handle
structured objects in general. Before proceeding let us recall that the disagree
ment set of a nonempty set W of expressions is obtained by "locating the first
symbol (counting from left) at which not all the expressions in W have exactly
the same symbol, and then extracting from each expression in W the subexpres
sion that begins with the symbol occupying at that position."JO

The object-oriented unification algorithm is extended to include structured
objects as follows:

Step 0: Retrieve the types of each expression if known.

Step 1: k = 0, Wk = W , Uk = </>, 13 = </>

Step 2: If Wk is a singleton, stop with success and return Uk; otherwise find
the disagreement set Dk of Wk'

Step 3: If there exist elements u and v in Dk , consider the following:

1. If both u and v are predicate symbols, u and v cannot be unified (as
they are different) and stop with failure.

2. If u = AI.Az ... An and v = BI.Bz ... Bm , where each A;, 1 :5 i :5 n,
or Bi , 1 :5 j :5 m, is a constant or a variable:

(a) If u and v cannot be the same type, with a unifier or a unifier that was
not applied before and backtracking is possible, backtrack to the
previous decision point; otherwise stop with failure.

(b) If u and v can be the same type, with a unifier 8' that was not applied
before, add this step as a decision point. Let 8 = {(u 0 8')/u , (v 0

8')/v}. Also let 13 = 13 U {(8' 0 u)/u , (8' 0 v)/v}. If at this point there
exists a set of unifiers of the form {wIIYI ' ... , wr/Yr}' where each
w; has the form DI.Dz ... DqoT;, where T; is a constant or a variable
and each Y; has the form CI'CZ ... CpoS;, where S; is a constant or a
variable, consider the following. If {T I , ••• , Tr } covers all attributes

www.manaraa.com

46 Chapter 3

of D I ... Dq and {SI ' ... , Sr} covers all attributes of CI ... Cp '

then add D I Dq/C I .•. Cp to 8. If {SI ' ... , Sr} covers all
attributes of C I Cp ' but {T I ' ..• , Tr } does not cover all attri-
butes ofD I ... Dq , then addDti , •.. , Tr/C I ..• Cp to 8. Otherwise
go to Step 4.

Step 4: Let u k+ I = Uk' 8, Wk+I = Wk' 8

Step 5: k = k + 1 and go to Step 2.

Example 3.5. Consider the following two expressions, assuming air
line (G) and airline (A), where the class airline is defined as in Example
3.4:

W = {p(G·ES ,GNS ,G), p(Afs ,A.cs ,A)}

According to the extended unification algorithm, initially 13 is <1>.
The unifier 8' = {A/Gls/ES} unifies G·ES and Afs. Let

8 = {(G·ES . 8')/G·ES, (Afs . 8')/Afs}
= {Afs/G·ES, Afs/Afs}

Also set

13 = 13 U {Afs/GES, Afs/Afs}

At the end of the first iteration,

WI = {p(Afs ,GNS ,G), p(Afs ,A-cs ,A)}.

Similarly a unifier for the second argument can be obtained as
{Acs/GNS ,A-cs/Acs} and 13 becomes

{Afs/G·ES, Afs/Afs, A'cs/GNS, A·cs/A·cs}

At this point Afs and Acs cover all attributes of A, and { G·ES ,GNS}
covers all the attributes of G (based on their types), so that the unifier
{A/G} is added, and the resulting set of unifiers is returned successfully.

3.5. ALGEBRAIC SPECIFICATIONS

An algebraic specification is a mathematical representation that is partic
ularly powerful in specifying abstract data types (ADTs). The underlying mathe
matical model of the algebraic specification is many-sorted algebra, which is an
abstract structure consisting of a family of sets of objects and a number of
functions whose arguments and results belong to their sets. I2 Formal specifica-

www.manaraa.com

Formal Specification and Verification 47

tions, such as algebraic specifications, aid the software designer in applying
rigorous mathematical reasoning about specifications. 13,14

Example 3.6. (Ref. 11) The following example describes the abstract
data type Stack in terms of an algebraic specification:

sort Stack;
operations
newstack: ~ Stack;
push: Stack * Nat ~ Stack;
isnewstack: Stack ~ Bool;
pop: Stack ~ Stack;
top: Stack ~ Nat;
declare s: Stack; n; Nat;
axioms
isnewstack(newstack) == true;
isnewstack(push(s,n)) == false;
pop(newstack) == newstack;
pop(push(s,n)) == s;
top(newstack) == zero;
top(push(s,n)) == n;

In the preceding example, sort lists the name of the ADT being repre
sented. The operation lists the services or functions available on in
stances of the type Stack and syntactically describes how they have to be
called; this is called the signature. For example,

push: Stack * Nat ~ Stack;

means that push is a two-argument operation; the arguments are of types
Stack and Nat, and the result is of the type Stack. Functions in an
algebraic specification have no side effects. In Example 3.6 push takes
two arguments: a stack s and a natural number n to create a new stack
that is identical to the input stack but has one extra element on its top.
By systematically avoiding any kind of side effects, properties of the
abstract data type can be expressed simply.

Example 3.7. This example describes the abstract data type TABLE in
the Larch Shared Language. 15

TableSpec: trait
introduces
new: ~ Table
add: Table, Index, Val ~ Table

www.manaraa.com

48 Chapter 3

E #: Index, Table ~ Bool
eval: Table, Index ~ Val
isEmpty: Table ~ Bool
size: Table ~ Card
constrains new, add, E, eval, isEmpty, size so that
for all lind, indI: Index, val: Val, t: Table]
eval(add(t,ind,val),indl) =
if ind = indI
then val
else eval(t,indI)
ind E new = false
ind E add(t,indI,val) = (ind = indl) I (ind E t)
size(new) = 0
size(add(t,ind,val)) = if ind E t
then size(t) else size(t) + 1
isEmpty(t) = (size(t) = 0)

In this example a trait is the building block for a Larch algebraic
specification. The keyword introduces starts the signature (i.e., sort),
and the keyword constrains starts the axioms. The meaning of the
specification should be reasonably clear to the reader.

As expected given an algebraic specification, new operations can be derived
from existing ones. Axioms can be employed to prove some desirable properties
about an ADT; they may also be used to discover inconsistencies among specifi
cations. In Example 3.6 for instance, such operations as newstack and push are
called constructors, since they either create a stack or add something into a stack.
Operations like pop are called modifiers, since they remove or replace something
from a stack. Finally such operations as isnewstack and top are called behaviors,
since they return some properties about a stack. A sufficiently complete set of
axioms associated with an ADT includes axioms of the forms

modifier(constructor(. . .)) = ...
and
behavior(constructor(. . .)) = ...

This can be used as a guideline to establish a complete specification of an
ADT.

3.6. PETRI NETS

In this section, we discuss a specification language particularly useful for
specifying concurrent systems. In general a concurrent system consists of a

www.manaraa.com

Formal Specification and Verification 49

number of tasks (processes) working asynchronously, where each task is sequen
tial. While each task can be specified as described in previous sections, communi
cation and coordination aspects of a set of concurrent processes must be specified
separately; Petri net is a powerful specification language for this purpose.

A Petri net is a mathematical representation of a system. J6 Petri nets are
very useful for modeling control aspects of systems. Analyzing a Petri net reveals
both the structure and the dynamic behavior of a system. The four components of
a Petri net are a set of places P, a set of transitions T, an input function I, and an
output function O. A Petri net is often denoted as PN = (P, T, I, 0). In this
description input and output functions relate places and transitions. Tokens are
associated with Petri nets. A token is a primitive concept of Petri nets. Tokens are
assigned to, and can be thought to reside in, a Petri net, and these are used to
define the execution of a Petri net.

The execution of a Petri net is controlled by the number and distribution of
tokens in the Petri net. A Petri net executes a loop that consists of three steps:

I. Identify the set of enabled transitions, where a transition is enabled if
each of its input places has at least as many tokens in it as the number of
the arcs from the place to the transition.

2. Arbitrarily select a transition to fire from the set of enabled transitions.

3. The selected transition fires by removing tokens from its input places and
creating new tokens that are distributed to its output places.

Example 3.8. (Ref. 17) The Petri net in Figure 3.2 shows the different
states (places) and transitions in a single-processor system. Clearly when
a job enters the system and the processor is idle (i.e., when a token is
present at the associated places), processing the job can begin, so the
system enters a new state: job being processed. Whenever the job is done,
it is placed on the output list, and the processor becomes idle again.

Example 3.9. (Ref. 18) The Petri net model in Figure 3.3 shows the
different states and transitions associated with two communicating pro
cesses. When one process is ready to send information, the information
is sent, then the process waits for an ACK (acknowledgment) message.
In the mean time, the buffer becomes full. When the buffer is full and
the second process is ready to receive information, it receives the mes
sage, then sends an ACK message; in the meantime it processes
the data. The first process resumes its operation when an ACK is re
ceived.

By nature the firings of transitions in a Petri net are nondeterministic. This
means if two transitions are enabled at the same time, either one can fire first. It is

www.manaraa.com

50

A new job enters the system

Ajob is on the input list

A job leaves the system

The processor is idle

Chapter 3

Figure 3.2. A Petri net model for a single-processor system. Reprinted with permission from Ref. 17.
© 1977, ACM.

also possible that two transitions are conflicting; this means that the firing of one
disables the other (see Figure 3.4).

To model complex systems, Petri nets can be used in a hierarchical fashion.
This means a net at a lower level of abstraction can be replaced by a single place
or transition at a higher level of abstraction. The modeling power of Petri nets is
just below the Turing machine, so that any significant extension results in a
Turing-machine equivalence,17 One significant extension is the introduction of

Process dat

Send to output buffer Ready to receive

Process data

Figure 3.3. A Petri net model for two communicating processes. Reprinted with permission from
Ref. 18. © 1980, IEEE.

www.manaraa.com

Formal Specification and Verification

Figure 3.4. Vndeterminism in Petri nets.

51

the inhibitor arc-an arc that is active only if its associated source place does not
hold a token. For example as shown in Figure 3.5, transition c2 is enabled only if
P4 and b2 have a token and b t does not.

Other extensions to Petri nets have also been proposed

l. Generalized Petri nets: Allow multiple arcs between a place and a
transition. A transition is enabled in a generalized Petri net only if each
of its input places has as many tokens as the number of arcs connec
ting the place and the transition. These nets can be shown to be
equivalent to ordinary Petri nets.

2. Extended Time Petri nets: An execution time r is associated with each

[~_:_I

p2

p4

Figure 3.5. A Petri net with an inhibitor arc. Reprinted with permission from Ref. 17.
© 1977. ACM.

www.manaraa.com

52 Chapter 3

transItIOn. Such nets are useful in predicting the performance of a
concurrent system.

Subclasses of Petri nets have been studied with the hope that their decision
power can be strengthened at the price of reduced modeling power:

1. Finite-State Machines: Such a machine can be converted into a Petri
net whose transitions have exactly one input and one output. For
example as shown in Figure 3.6, the finite-state machine shown in (a)
can be converted into the Petri net shown in (b). The conversion is
straightforward: Each state is transformed into a place; each input is
transformed into a transition; and each arc is transformed into two arcs
in the net. The net shown in (b) is equivalent to the state machine
shown in (a), since a string that can be accepted by (a) corresponds to a
sequence of transitions that can be fired if a token is placed in placePA'
and vice versa.

2. Marked Graphs: A marked graph is a Petri net whose places have
exactly one input transition and one output transition.

3. Free Choice Petri nets: A Petri net is a free choice net if each arc from
a place is either the unique output from the place or the unique input to
a transition.

See Ref. 19 for a discussion of the relationships between Petri net
theory and algebraic specifications.

3.7. VERIFYING SPECIFICATIONS

The purpose of taking a formal approach to requirements specification is to
prove that a specification satisfies certain basic properties required for all correct
programs. For example it is important to show that a specification is consistent.
With a logic-based specification language, such as Z and the object-oriented
logic system, this means a specification must not be only syntactically correct but
also semantically consistent (i.e., no contradiction can exist among axioms). This
can be achieved incrementally by proving that given a logic system L and a new
axiom A, L and A cannot derive a contraction.

In addition to consistency, formal requirements specification allows mathe
matical proofs to be conducted to verify the existence of a solution to a problem.
For example consider the problem of finding the greatest common divisor of two
positive integers. The following is the set of requirements for the two input
parameters, say, x and y, and the desired output z (Ref. 20):

1. z divides x.

www.manaraa.com

Formal Specification and Verification

b a

53

b

(a)

a

(b)

b

Figure 3.6. Transfonnation from a finite-state machine (a) to a Petri net (b). Reprinted 'with pennis
sion from Ref. 17. © 1977, ACM.

www.manaraa.com

54 Chapter 3

2. z divides y.

3. z is the greatest of the set of integers satisfying Conditions 1 and 2.

The following proof, stated informally, verifies that for every pair of posi
tive integers x and y, there exists a number z that satisfies Condition 3:

1. Every integer can be divided by 1. Therefore 1 is a common divisor of
any pair of integers; Le., the set of common divisors of any two integers
is not empty.

2. The set of common divisors of any two integers is finite, since each
integer is its greatest divisor.

3. Based on Properties 1 and 2 and the fact that every finite nonempty set of
integers has a greatest element, the statement can be concluded.

The same statement can be verified by an algebraic specification. Consider
ing the same problem, the following is a set of axioms for determining the
greatest common divisor (gcd) between two positive integers:

1. x = gcd(x,x)

2. gcd(x,y) = gcd(x + y,y)

3. gcd(x,y) = gcd(y,x)

Now the statement that there exists an integer r such that r = gcd(p,q), given
any two positive integers p and q, can be proved by induction. We assume that
the statement is true for all p and q less than N (the hypothesis), then prove that
the same is true for all p and q less than or equal to N:

1. If both p and q are less than N, it is true by hypothesis.

2. If both p and q are equal to N, it can be proved that N = gcd(N,N) by
Axiom 1.

3. Let p = N and q < N. By Axiom 2, gcd(p,q) = gcd(p - q,q). The
statement follows from the hypothesis.

4. Let p < N and q = N. The statement can be proved as in Axiom 3.

Reference 20 suggests that formal specifications orthogonal to each other,
such as algebraic specification and logic-based specification are complementary.
Reference 20 also suggests writing and verifying separately different specifica
tions to provide a secure basis for software engineering.

www.manaraa.com

Formal Specification and Verification 55

Many properties of concurrent systems can be proved formally based on
theorem proving; these can be divided into two categories21 :

1. Safety properties: Concerning a program not entering an unacceptable
state.

2. Liveness properties: Concerning a program eventually entering a desir
able state.

Examples of safety properties include the following:

1. Partial correctness: If the precondition of a program is true when the
program starts, then the postcondition has to be true after the program
terminates.

2. Deadlockfreeness: A program can never enter a state in which no further
progress can be made.

3. Mutual exclusion: Two different processes can never be in their critical
sections at the same time.

Some examples of liveness properties include the following:

1. Proper termination: A program eventually terminates.

2. Each request for service is eventually answered.

3. A process eventually enters its critical section.

A substantial amount of work with temporallogic21 has been done to prove
that a program satisfies certain properties. Temporal logic is another formal
specification language that extends ordinary logic with two temporal operators:

1. 0: meaning now and forever

2. 0: meaning now or sometime in the future

For example the assertion x > 0 is interpreted as x is positive now. The assertion
D(x > 0) is interpreted as x is positive now and forever; and the assertion 0 (x >
0) is interpreted as x is positive now or will be positive sometime in the future.
Temporal operators are useful in dealing with dynamics (Le., sequences of state
charges) that could be created by a program.

Three kinds of assertions are used to refer to any control component A (Le.,
statement) of a program: at A, in A, and after A, meaning the control is at the
beginning of A, during the execution of A, and after A is executed, respectively.
Therefore partial correctness for example can be expressed as:

www.manaraa.com

56

(at S 1\ P) -> D(after S -> Q)

Chapter 3

This means if before program S starts, precondition P is true, then it is always
true (i.e., for all possible sequences of states that may be obtained due to S's
execution) that S terminates with the postcondition Q true. Similarly mutual
exclusion can be expressed as:

at S -> 0 -(in CS I and in CS2)

To prove such properties, temporal logic employs all the axioms and rules
of inference available in ordinary logic and some additional theorems, such as the
following21 :

1. D(P -> Q) -> (P ->-> Q), where the notion ->-> is interpreted as
eventually leads to.

2(a) D(P 1\ Q) is equivalent to (OP 1\ DQ).

2(b) ¢ (P ¢ Q) is equivalent to (¢ P V ¢ Q).

3. (OP 1\ D(P -> Q)) -> DQ

4. ¢P V D-P

5. «P ->-> Q) 1\ (Q ->-> R)) -> P ->-> R

6. «P ->-> R) 1\ (Q ->-> R)) -> «P V Q) ->-> R)

7. D(P V Q) -> (OP V ¢Q)

8. [(P 1\ DQ) ->-> R] -> [(P 1\ DQ) ->-> (R 1\ DQ)]

Reference 21 contains detailed proofs for some interesting examples. Reference
22 presents some additional theorems that deal with the synchronous communi
cation constructs available in esp.20 Real-time constructs, such as wait, is consid
ered in Ref. 23.

Instead of theorem proving, a graph-based approach can be employed to
verify a specification presented as a Petri net. For the purpose of analysis, a
marked Petri net (P,T,l,O,a) can be defined as a Petri net (P,T,l,O) augmented
with a marking function a, which assigns tokens to places in the net. The number
and positions of tokens in a net may change when a net is being executed.
Therefore the state of a Petri net with n places PI ... Pn can be defined as a
vector (0.1 ... an), where ai' 1 :5 i :5 n, is the number of tokens in placePi at any
particular instance of time. The change of states in a net can be described in terms
of the next-state function 8, where 8(a,t) gives the marking resulting from the

www.manaraa.com

Formal Specification and Verification 57

marking a with transition tj" Based on this two sequences can be produced from
the execution of a Petri net: a sequence of markings (ao,a 1 , •••) and a sequence
of transitions (tj(O),tj(l) , ...) such that S(ak,tj(k») = a(k+ I)' where k = 0, 1,2, etc.
The reachability set R(M) for a marked Petri netM = (P,TJ,G,a) is defined to be
the set of all possible markings that can be reached from a. In other words it
defines all possible states that can be reached inM, assuming the initial state is a.

The most fundamental problem associated with a Petri net is the
reachability problem: Given a marked Petri net with a marking a and another
marking, a, is a reachable from a? The following are some other properties
defined in Petri net theory:

1. Boundness24: The number of tokens in each place at any instance of time
should be bounded. A Petri net is k-bounded if at any time the number of
tokens in any place is bounded by k. A I-bounded Petri net is called a
safe net. Such properties are important for verifying mutual exclusions
(i.e., only one token in one place) and finite capacities of places (e.g.,
buffer spaces).

2. Liveness25 : A Petri net is live if there always exists a transition to fire
from a reachable marking in the net. This property implies the system is
deadlock free.

3. Conservativeness: A Petri net is conservative if the number of tokens in
the net is a constant.

4. Proper Termination26: A Petri net is properly terminating if it always
terminates in a well-defined manner such that no tokens are left in the
net. With this property the system is guaranteed not to produce side
effects on the next initiation.

Some of the preceding properties can be established by constructing a
reachability tree from the net. This gives a finite representation for the reachability
set. A reachability tree avoids enumerating apotentially infinite numberofmarkings
(states) of the net by introducing a special symbol w, which stands for arbitrarily
large. Specifically, a reachability tree is constructed as follows:

1. The root of the tree is labeled with the initial state (marking).

2. From any leaf node on the tree that is not terminal and marked with a, a
node is added to the tree and marked with (3 if there exists an enabled
transition t for which S(a,t) = (3. If (3 repeats a marking associated with a
node that belongs to the path from the root, the added node becomes a
terminal node, and it is not expanded further. In addition if all components

www.manaraa.com

58 Chapter 3

of 13 are greater than or equal to the corresponding components of a
marking associated with a node that belongs to the path from the root,
those components strictly greater than the corresponding components (of
the marking ofthe node on the path) are replaced by the special symbol w.
This is necessary because otherwise those components (Le., those replaced
by w) can ultimately become very large by repeating transitions in
between the two nodes. Such repetitions do not discover new markings
that are reachable from the first node by simply repetitively visit the same
set of nodes between the two nodes.

The reachability tree produced is finite, since loops are avoided. As a simple
example, consider the marked Petri net shown in Figure 3.7(a). The correspond
ing reachability tree is established in Figure 3.7(b). From the node labeled
(1,0,0,1), transition t2 is enabled, and the new marking should be (1,1,1,0). Now
since every component of (l,1,1,0) is greater than or equal to the corresponding
components of the marking associated with the root, which is ofcourse on the path
from the root to the new node, the new node should be labeled (l,w,I,O).

The properties discussed earlier can now be visually obtained from the
reachability tree:

• Ifa Petri net is k-bounded, then the reachable state space must be finite. This
is because there are only k + 1 possible values that can be assigned to each
place in a marking. Consequently no W can exist in the reachability tree.

• If a Petri net is conservative, then the reachable state space must be finite.
This is because there are only a finite number of ways of partitioning
tokens among places. Consequently no W can exist in the reachability tree.

Some problems associated with Petri nets are solvable but difficult to solve;
these include the reachability problem and the liveness problem, which can
be proved to be equivalent to the reachability problem. Some other problems
associated with Petri nets, are not, however, decidable; these include the follow
ing:

• Given two marked Petri nets, is the reachability set of one a subset of that
of the other?

• Given two marked Petri nets, is the reachability set of one equal to that of
the other?

As mentioned earlier, subclasses of Petri nets have higher decision power (but a
weaker modeling power): A state machine is conservative and finite and a
marked graph is live and safe. The reachability problem is solvable.

www.manaraa.com

Formal Specification and Verification 59

References 27-29 present other work on applying Petri net analysis. We see
from the structure of a Petri net that it can be converted into a production
system.3D A production system consists of a set of rules, or productions, which
take the form (condition) -> (action); a database or context, which maintains
state/data of the system; and a rule interpreter. The condition portion of each rule
(LHS) is composed of some logical combination of results obtained from com
paring some state variable(s) to a fixed value or to some other state variable(s).
These results are tested continuously. If the condition is true, the consequent
action (RHS) of the rule is executed. In a pure production system, rules are in a
sequential list, and these are evaluated one at a time according to their order on
the list. When a rule is found to be true in the current context, the RHS is

(1,w,O,O)

(b)
(1,0,1,0)

~t1
(1,0,0,1)

~~
(1 ,w,1 ,0)

/' ~("F
(1,w,1,O)

Figure 3.7. A Petri net and its reachability tree. Reprinted with pennission from Ref. 17. © 1977. ACM.

www.manaraa.com

60 Chapter 3

executed, then rule testing begins again at the top of the list of rules. If no rules
have true LHSs or a halt RHS is executed, the system terminates processing.

3.8. FINAL REMARKS

In the past many argued that formal specification methods, such as those
discussed in this chapter, are too complex to be useful in real applications. In
addition these methods require complex mathematics, which is difficult to learn;
they tend to increase the cost of development; and they are incomprehensible to
clients. However Ref. 31 points out that such arguments are not true; in particular
formal specifications have the ability to expose more errors than informal methods.

In addition to requirements specification and verification, Ref. 32 shows that
many formal specification languages (e.g., Z) are especially suitable for system
design via decomposition and refinement and for system validation-a formal
specification can be used with an implementation to reveal missing paths.

In addition to the formal specification languages described in this chapter,
many other formal specification languages have been proposed. Some notable
ones are the Vienna Development Method (VDM),33 Communicating Sequential
Processes (CSP)35 (see Chapter 5 where it is discussed with a programming
language derived from it), and Lamport's transition axiom method.34

Like Petri net some formal specification languages are executable; these
include PROLOG (see Chapter 7, where it is discussed as a declarative program
ming language) and PAISLEy.36 An executable formal specification language can
provide many additional advantages, such as immediate feedback about specifi
cation, rapid prototyping, and symbolic execution (see Chapter 9).32

PROBLEMS

1. Consider a first-order system with the following predicate definitions:

lives(person_name,street city)
works(person_name,company_name, salary)
located_in(company_name,city)
manages(person_name,manager_name)

Convert each of the following queries into first-order logic:

• Does anybody work for Bank of America?
• Does anybody work for Bank of America and earn more than 10,000?

www.manaraa.com

Formal Specification and Verification 61

• Does anybody live in the same city as the company he/she works for?
• Does anybody live in the same city and on the same street as his/her
manager?
• Is there anybody who does not work for Bank of America?

2. Suppose that each edge from node x to node y in a directed graph is
asserted as a fact of the form edge(x,y). Write a functional specification in first
order logic for the Boolean function hamiltonian(Node_list), where Node_List
is a list representation of the set of all graph nodes and the graph contains a
hamiltonian circuit, i.e., a path that begins and ends at the same node and passes
through each node in Node _List exactly once.

3. Suppose each edge from nodex to node y in a directedgraphg is assertedas
a fact ofthe form edge(g,x,y).Also assume that eachnodexofg is assertedas afact of
the form node(g,x). Write a functional specification in first-order logic for the
procedural predicatemin _span_ tree(gL),whereL is a list representation of the set
of edges that forms a minimal spanning tree for the graph g.

4. Write the following integrity constraints for the database described in
Problem I:

(a) No employee of Bank of America can make more than his/her
manager.

(b) Every employee has to live in the city in which his/her company is
located.

S. Write a Z specification for the abstract data type Queue.

6. Write a Z specification for the abstract data type Binary Search Tree.

7. Describe the finite-state machine in Figure 3.6(a) in terms of a produc
tion system. You may assume a set of actions.

8. Describe the Petri net in Figure 3.3 in terms of a production system.

9. Develop an general algorithm to convert a Petri net into a production
system.

10. Find the set of reachable states for the Petri net in Examples 3.8
and 3.9.

www.manaraa.com

62

REFERENCES

Chapter 3

1. Alford, M. IEEE Computer 18:4, 36-46 (Apr. 1985).
2. Shoenfield, 1. R. Mathematical logic (Addison-Wesley, Reading, MA, 1967).
3. Genesereth, M. R., and Nilsson, N. J. Logical foundations of artificial intelligence (Morgan
Kaufmann, Palo Alto, CA, 1988).

4. Nilsson, N. J. Principles of artificial intelligence (Morgan Kaufmann, Palo Alto, CA, 1980).
5. Ullman, J. D. Principles of database systems. 2d ed. (Computer Science Press, Potomac, MD,
1982).

6. Gallaire, H., Minker, J., and Nicolas, J. M. ACM Computing Surveys 16, 153-185 (June 1984).
7. Spivey, J. M. Z notation: a reference manual (Prentice-Hall, New York, 1988).
8. Imperato, M. An introduction to Z (Chartwell-Bratt, Bromley, Kent, U.K., 1991).
9. Sheu, P. C-Y., and Yoo, S. B. "A deductive approach to software reuse." Proc. of 19941nterna

tional Conference on Software Engineering and Knowledge Engineering (Latvia, June, 1994).
10. Chang, C. L., and Lee, R. C. T. Symbolic logic and mechanical theorem proving (Academic
Press, New York, 1973).

11. Horebeek, I. V., and Lewi, J. Algebraic specifications in software engineering, an introduction
(Springer-Verlag, New York, 1989).

12. Reichel, H. Initial computability algebraic specifications and partial algebras (Oxford Science
Publications, New York, 1987).

13. IEEE Transactions on Software Engineering, Special Issue on Algebraic Specifications SE·U:3,
242-251 (Mar. 1985).

14. Ehrig, H., and Maht, B. Fundamentals ofalgebraic specification I: equations and initial seman-
tics (Springer-Verlag, New York, 1985)

15. Guttag, J. V., Horning, J. J., and Wing, J. M. IEEE Software 2:5, 24-36 (Sept. 1985).
16. Peterson, J. L. Net theory and the modeling of systems (Prentice-Hall, New York, 1981).
17. Peterson, 1. L. ACM Computing Surveys 9:3, 223-252 (Sept. 1977).
18. Ramamoorthy, C. V., and Ho, G.IEEE Transactions on Software Engineering SE·6:5, 440-449
(Sept. 1980).

19. Reisig, W. Theoretical Computer Science 80, 1-34 (1991).
20. Hoare, C. A. R.IEEE Computer 20:9,85-91 (Sept. 1987).
21. Owicki, S., and Lamport, L. ACM Transactions on Programming Longuages and Systems 4:3,
455-495 (July 1982).

22. Lamport, L., and Schneider, F. B. ACM Transactions on Programming Longuages and Systems
6:2,281-296 (Apr. 1984).

23. Liu, L. Y., and Shyamasundar, R. K.IEEE Transactions on Software Engineering SE·16:3, 373-
388 (Apr. 1990).

24. Karp, R. M., and Miller, R. E. SIAM Journal of Applied Math. 14 (Nov. 1966).
25. Hack, M. Decidability questions for Petri nets (Ph.D. diss., MIT, 1975).
26. Gostelow, K. P., Flow of control. resource allocation. and the proper termination ofprograms
(Ph.D. diss., University of California, Los Angeles, 1971).

27. Leveson, N. G. IEEE Transactions on Software Engineering SE.13:3, 386-397 (Mar. 1987).
28. Leveson, N. G. Communication ACM 34:2, 36-46 (Feb. 1991).
29. Coolahan, J. E., and Roussopoulos, N.IEEE Transactions on Software Engineering SE-9.9, 603
(Sept. 1983).

30. Davis, R., and King, 1. In Machine intelligence. vol. 8 (Elcock and Michie, eds.) (Wiley, New
York, 1976), pp. 279-90.

31. Hall, A.IEEE Software 7:9,11-20 (Sept. 1990).
32. Wing, J. M. IEEE Computer 23:9,8-24 (Sept. 1990).

www.manaraa.com

Formal Specification and Verification 63

33. Jones, C. B. Systematic software development using VDM (Prentice-Hall, New York, 1986).
34. Lamport, L. ACM Transactions on Programming Languages and Systems 5:2, 190-222 (Apr.
1983).

35. Hoare, C. A. R. Communication ACM 21:8, 666 (Aug. 1978).
36. Zave, P., and ScheH, W./EEE Transactions on Software Engineering SE-12:2, 312-325 (Feb.
1986).

www.manaraa.com

4

Design Methodologies and Specifications

In the design phase of the software life cycle, the architecture of the system is
determined. If it is reasonably complicated, the system in most cases consists of a
number of components, called modules. During the design phase, those modules,
relationships among modules, and possibly some control sequences are identi
fied. Requirements for the modules are further specified, and this step is repeated
until no further decomposition can be made and each module can be realized
directly.

The preceding description reflects two important concepts commonly em
ployed in the design process: decomposition and refinement. Clearly these con
cepts were employed in some of the formal specification languages discussed in
Chapter 3 (e.g., Z). However we emphasize here that a design specification must
often identify the control aspects of a system in addition to its structure.

Chapter 4 begins with a discussion of some of the concepts behind most of
the existing design methodologies (Section 4.1). Section 4.2 summarizes some
design specification languages, which are usually semiformal or informal, pro
posed for procedure-oriented software systems. One particular design specifica
tion language, namely, structured design analysis, and its associated design
methodology are discussed in detail. Section 4.3 introduces some design issues
related to object-oriented programming. Section 4.4 describes how to apply
structured design analysis to express the dynamic and functional semantics of an
object-oriented system. Section 4.5 summarizes some object-oriented design
methodologies. Finally Section 4.6 introduces some CASE tools that can be used
to automate many tasks involved in the design process.

4.1. DESIGN CONCEPTS

A number of design concepts have been proposed for software systems. A
fundamental one may be stepwise refinement, which begins with the highest
level of abstraction-program specification. The program is then decomposed
into a number ofmajor components, and the major components are designed. The
major components are subsequently decomposed. This process is repeated until
sufficient details about the program can be developed to implement it with a

65

www.manaraa.com

66 Chapter 4

programming language. According to Ref. I, stepwise refinement requires post
poning decisions about representation details as long as possible and carefully
demonstrating that each successive step is a faithful expansion of previous steps.
This concept is important for both structured and object-oriented programs.

Other important design concepts include the following:

• Abstraction2 : Functions of a system should be hierarchically structured so
that lower modules provide services to higher level modules. A module at
each level of abstraction should have the capability of summarizing ser
vices provided to it from lower level modules.

• Information Hiding3 : Each module hides its internal details, and modules
communicate only through well-defined interfaces.

• Modularity: A system should be decomposed into a set of well-defined
and manageable units whose interfaces are well-defined. A number of
criteria are proposed to decompose a system into modules. An important
one is based on coupling and cohesion,4 so that modules are chosen to
minimize intermodule coupling and maximize intramodule cohesion. The
degrees of coupling between two modules can be ranked (from the highest
to the lowest) as follows:

-Content Coupling: Occurs if one module modifies some data or control
components within another module.

-Common Coupling: Occurs if two modules share some global data.
-Control Coupling: Occurs if one module passes some control flags to
another module to impact its control flow.

-Stamp Coupling: Occurs if only data structures (e.g., arrays) are passed
as parameters between two modules but not all of the passed data are
used by the called module.

-Data Coupling: Occurs if only data are passed as parameters between
two modules and all of the passed data are used by the called module.

The degrees of cohesion within a module can be ranked (from the lowest
to the highest) as follows:

-Coincidental Cohesion: Occurs if elements of the module have no
obvious relationships to one another.

-Logical Cohesion: Occurs if elements of the module have some logical
associations. A typical example of this type of cohesion is a module
containing elements that perform the same type of functions (e.g.,
I/O). Another example is a module whose elements are executed in
sequence to accomplish one function (e.g., initialization). In essence,
elements of this type of module are grouped by some logical associa
tions.

www.manaraa.com

Design Methodologies and Specifications 67

-Temporal Cohesion: Logical cohesion, but elements are executed in
sequence.

-Sequential Cohesion: Temporal cohesion with the additional property
that the input of one element is the output of another.

-Communication Cohesion: Occurs if elements of the module refer to
the same data set.

-Informational Cohesion: Occurs if elements of the module are related
to manipulate the same data structure.

-Functional Cohesion: Occurs if elements of the module are related to
perform a single data structure function.

4.2. PROCESS DESCRIPTION LANGUAGES AND DESIGN
METHODOLOGIES

As stated in Ref. 5, "While a process is a vehicle for doing a job, a process
description is a specification of how the job is to be done. Thus cookbook recipes
are process descriptions, while carrying out the recipes are processes." The
essence of some of well-known process description languages and their associ
ated design methodologies (if these exist) are summarized in the following.

4.2.1. Data Flow Diagrams and Design Methodology

Data flow diagram was first used by Ref. 6 as a model for graphically
capturing a description of the information flow within a system. The captured
information was then used to perform a structured analysis, which involves
studying systems of all sizes. This study can lead to their specifications.

A data flow diagram is made up of five types of elements: data flows,
activities, files, sources, and sinks. Each flow is represented by an arc with an
arrow to show the direction of flow. A labeled arc denotes a data flow of the
named information or object that is passed between other entities in the process.
An activity is denoted by a circle, and it represents a conversion of incoming data
flow into outgoing data flow. The uniqueness of an activity in the data flow
diagram is determined by its name, so each activity must have its own unique
name within a process. A file is denoted by an open ended box in a data flow
diagram, and it represents a storage of information. Sources, sinks, and external
elements are denoted by boxes. A source provides data to an activity, while a sink
receives data and information from the activity.

The language introduced in the preceding discussion is substantiated by the
so-called data flow design methodology, which maps information flows and

www.manaraa.com

68 Chapter 4

processes into a program structure. One of two types of analysis are used to
derive the program structure: transform or transaction analysis. Transform anal
ysis is used if the information flow can be separated into input and output.
However if one data item determines the flow of data through various paths,
transaction analysis should be used. A system can have both transform and
transaction flows; however the prevalent of the two must be identified. The
following list shows the primary steps of data-flow-oriented design:

l. Refine data flow diagram.

2. Determine type of flow:
• If transaction:
-Identify transaction center and data acquisition path.
-Map into transaction structure.

• If transform:
-Identify incoming/outgoing branches.
- Map into transform structure.

3. Factor the structure.

4. Refine the structure using design heuristics.

5. Develop interface description and global data structure.

6. Review, then return to Step 2 if necessary.

7. Prepare design details.

For transform analysis, the first step is to review the Level 0 data flow
diagram (DFD), the system specification, and the software requirements specifi
cation. The second step is to refine the DFD to include more details. Refinement
continues until all required details are present. Then the DFD is inspected to
identify transform and transaction flows. If an information flow is transform,
transform analysis is used to map the DFD into a program structure. If a transac
tion flow is present, transaction analysis is used. The last step involves factoring
the DFD diagram. This is the process of mapping the DFD into a program
structure that can be represented by a structure chart.

By the mid-1980s structured analysis techniques were found to lack provi
sions for real-time control-oriented systems. Real-time extensions were made by
Refs. 7 and 8. The Ref. 7 extensions basically provide time-continuous informa
tion flow, control information and processing, multiple instances of the same
process for multitasking systems, and state-transition mechanisms.

Reference 8 added three extensions/modifications. First data flow and con
trol flow were separated into two diagrams. Second control specifications

www.manaraa.com

Design Methodologies and Specifications 69

(CSPECS) and process specifications (PSPECS) were associated with the dia
grams. A CSPECS does two things: It determines how the process behaves when
a control signal is sensed, and it determines which processes are invoked by the
signal. A PSPEC describes the inner workings of a process in the flow diagram.
Third, the state-transition diagram was added. By following state-transition dia
grams, we can easily see what states cannot be reached nor exited, then correct
these errors. The requirements dictionary is a relational database containing all
data, composite or singular, used in a system. This is another extension to DFD.
It allows us to know exactly what is flowing in the DFD. Example 4.1 9 shows the
DFD, CFD, CSPEC, PSPEC, and data dictionaries of a simple system: a vending
machine.

Example 4.1. (Ref. 9) The operations of a typical vending machine
can be explained as follows. Initially the machine waits for a customer
selection. Once a valid selection is made, the machine waits for pay
ment. If the selected product is available and the payment is sufficient,
the machine dispenses the product, then returns the correct change. If
payment is insufficient, the machine returns the payment. In both cases
change is returned after the customer presses the return coins button.

As shown in Figure 4.1, the DFD diagram consists of a number of

-coins
coins

customer selection

Figure 4.1. The DFD for the vending machine example.

returned coins

product

www.manaraa.com

70 Chapter 4

Valid Payment

input: price, payment
output: change due,

Sufficient_Payment (Boolean)
if payment >= price
Sufficient_Payment = True
change due = payment - price

else
Sufficient_Payment = False

Figure 4.2. The PSPEC for valid payment.

modules associated with the system: Get Payment, Validate Payment,
Dispense Payment, Get Product Price, Get Valid Selection, and Dis
pense Product. Among these are the infonnation flows. For example the
Validate Payment module obtains the correct price and the amount of
payment from Get Product Price and Get Payment, respectively. The
module then produces the output Change Due, which serves as the input
to the module Dispense Change. Thus a DFD shows the modules of a

""rc'Oin return Request
~' I

products

,,
Product "
Availab/£}',,,,,,,,,

~ ,/, ,
\,

coins

(;:\
~

Coin detecte~,

price table

Figure 4.3. The CFD for the vending machine example.

www.manaraa.com

Design Methodologies and Specifications 71

system and data flows among the modules, i.e., inputs to, and outputs
from, those modules. The functionality (Le., relationships between in
puts and outputs) of each module is described in the associated PSPEC
of the module, as in Figure 4.2. The events produced by the modules are
shown in the CFD, as shown in Figure 4.3, where a short vertical bar
designates the CFD/CSPEC interface, and control flows are designated
as dotted arcs. In Figure 4.3, for example, the control flow from the
module Get Payment to the CFD/CSPEC interface means the event
Coin detected is set by the module Get Payment and used in the associ
ated CSPEC. Two control flows enter the module Dispense Change
Coin Return Request and Product Available; therefore values of both
events (flags) are used in the module Dispense Change to take the
correct action (e.g., if the product is not available, then return the pay
ment; if the product is available and the return coin button is pressed,
then return the correct change, etc.). Finally as shown in Figures 4.4 and
4.5, the CSPEC consists of two parts: a state-transition diagram (STD)
and a process activation table (PAT). In the STD each rectangle desig
nates a state, and arcs correspond to state transitions labeled by the pair
event/control signal. The PAT records the actions (module activations)
triggered by each control signal.

•• EvenVControl Signal

Coin Return request!
Return Payment

se Product

waiting for coins

-Product Available/ Coin detected!

Return Payment Accept Customer
request

It

waiting for selection

Product Dispensed!
Sufficient PaymentlDispen

Accept New Coin

it

dispensing product

Figure 4.4. The STD for the vending machine example.

www.manaraa.com

72 Chapter 4

Dispense Dispense Get Valid Get
Charge Product Selection Payment

Accept
Customer 0 0 1 0
Request

Return
Payment 1 0 0 0

Accept New
0 0 0 1

Coin

Dispense
1 1Product 0 0

Figure 4.5. The PAT for the vending machine example.

4.2.2. SSL

System Specification Language (SSL) is a portion of Distributed Computing
Design system (DCDS).lO,ll Using SSL to specify products was first proposed
by Mack Alford; SSL can also be used to capture processes behavior.

The SSL structures are made of F-nets and I-nets. The F-nets are structures
containing time functions (activities), while I-nets are structures containing data
items. Time functions in an F-net can be decomposed into other F-nets. Similarly
an item in an I-net can be further decomposed into other I-nets. Data flows in an
SSL diagram are normally denoted by dashed lines, and control flows are nor
mally denoted by solid lines. An activity is a behavior graphically denoted by a
box. A data type or a file is treated as an item, and it is graphically denoted by an
oval. To represent behavior the SSL model contains a variety of nodes: begin
nodes, end nodes, parallel nodes, selection nodes, replication nodes, and iteration
nodes. The following notations are often employed for these node types: +
represents selection operations, @ represents iteration operations, & represents
parallel operations, and *& represents replication with coordination operations.
In general an SSL diagram is composed of a set of nodes and a set of arcs
connecting the nodes; the diagram can be constructed from a set of building
blocks, as shown in Figure 4.6.

www.manaraa.com

Design Methodologies and Specifications 73

(a)

(b)

.~
•

(c)

(e)

Figure 4.6. The Building blocks for SSL.

4.2.3. HIPO

Since it is estimated that one-third of reworking costs can be traced to, errors
in the analysis and design phases of a project, it is extremely important to place
more emphasis on the quality of analysis and design. Hierarchy Input-Process
Output (HIPO)12 allows the software designer to use an integrated method that
can specify all levels of a system, from the highest functional level to the lowest
code level. An HIPO specification has two basic components: a hierarchy chart
and input-process-output charts. The hierarchy chart provides a functional break
down of the system, its functions and subfunctions. An input-process-output
chart explains each function or subfunction of the hierarchy chart in terms of its
input and output characteristics. Figure 4.7 shows a hierarchy chart and input
process-output chart. 12 This method provides a top-down, comprehensive func
tional breakdown of the whole system. It also allows different people to work on
different functions as long as the functional interface specified in the HIPO charts
is followed.

4.2.4. INTERCOL

The INTERCOL13 is a language describing how modules are interconnected.
It provides two facilities at the module level: interface control and version con
trol. It defines resources as all things that can be named in a programming

www.manaraa.com

74

1.0

Chapter 4

2.0 3.0

(a)

Input

[J
(b)

4.1 4.2

Process Output

Figure 4.7. Hierarchy chart (A) and input-process-output chart (b). Reprinted with permission from
Ref. 12. © 1976, IEEE.

language, e.g., variables, procedures, type definitions, etc. A subresource is a
resource that is part of another resource, e.g., a field of a record. The INTERCOL
uses a combination of incremental type checking with incremental compilation.
Incremental type checking checks interface requirements and provides directives
in a INTERCOL program to assure that the interface between modules is consistent.
The INTERCOL also insists that no module be given more access rights than it
actually needs. This can be done in the following ways:

• Heterogenous Interfaces: Different modules can use only resources spe
cified in their require clause.

• Name Control: A module may be given access to only one subresource X
of a resource N even if N has more than one subresource.

• Write protection: It allows explicit control of write protection of a re
source.

www.manaraa.com

Design Methodologies and Specifications

The following is an example of an INTERCOL program l3 :

system PARSER
module 10
provide
function SrcChar : char;
const Line = record { lineNum : int;

lineBuf : array[l. lineLn] of
char; };

procedure ListLine (outline: ILine) ;
endIO
module LEXAN
provide
type Lexeme = (Keyword, Operator, Identifier);
function NextLex : Lexeme;
require SrcChar, LineLn, Line .{I ineNum , linebuf},

ListLine
end LEXAN
end PARSER

75

In the preceding program, the system PARSER consists of two modules, 10
and LEXAN. Module 10 provides a function, a procedure, a constant, and a user
defined resource, called Line. Module LEXAN provides a user-defined type
Lexeme and a function, and it requires all resources provided by 10.

To facilitate version control, "Each module or system in an INTERCOL de
scription is viewed as a family, whose members are the various versions."13 A
module family contains three different types of members:

• Implementations: Actual source programs that share the same interface
but are implemented in different ways

• Revisions: Revisions of implementations due to changes in one implemen
tation, to fix bugs or other small problems

• Derived versions: Versions generated automatically

A system family is composed from module families, and a module family is
composed from specific module versions. A complete example of an INTERCOL
description, including interface control and version control, can now be presented
in the following: 13

www.manaraa.com

76 Chapter 4

system PARSER
module 10
provide
function SrcChar : char;
const Line = record { lineNum: int

lineBuf : array[l. lineLn] of
char; };

procedure ListLine (outline: ILine) ;
implementation HYDRA. bliss
implementation TOP. bliss
end 10
module LEXAN
provide
type Lexeme = (Keyword, Operator, Identifier);
function NextLex : Lexeme;
require SrcChar, LineLn, Line .{lineNum, linebuf},

ListLine
end LEXAN
composition CMMP = { LEXAN, IO.HYDRA }:Target
. PDPll
composition PDPIO = { LEXAN, IO.HYDRA }:Target
.PDPIO
end PARSER

In the preceding program, there are two implementations for 10: one for the
HYDRA operating system and the other for the TOPS 10 operating system. Both
implementations are written in the language BLISS, and the whole system is
compiled for two different target machines, PDP10 and PDPll.

4.2.5. Others

Process description languages has been a very active research area; languages
other than those just discussed include flowcharts, pseudocodes, structure charts
(which show hierarchical structures of modules), decision tables, Problem State
ment language (PSL),14 Requirements Statement language (RSL),10 SADT,15
Structured System analysis (SSA).6 Many of these were also accompanied by an
automated analysis system, e.g., Problem Statement analyzer (PSA)14 for PSL and
Requirements Engineering Validation system (REVS)1O for RSL.

www.manaraa.com

Design Methodologies and Specifications

4.3. DYNAMIC AND FUNCTIONAL MODELING

77

An object model describes the data aspects of the system; these include the
static structures of objects involved in the system. In OMT the behavior of an
object-oriented system is described in terms of two models: the dynamic model
and the functional model. The dynamic model describes the control, or dynamic,
aspects of the system; the functional model describes the transformational, or
functional, aspects of the system. The dynamic model consists of a set of state
diagrams, one for each class and one for each process that accesses objects in the
system. The states of a state diagram can be defined in terms of existing attributes
or by creating separate state variable(s). Operations can be assigned to a state so
that they are executed whenever the state is entered. State transitions are trig
gered by events, which are special objects used solely for control purpose. In
OMT the term event is somewhat vaguely defined. A more precise definition of
events can be found in recent research on active databases. For example in
SAMOS,16 five types of primitive events are defined

• Message Events: Point in time when a message is arriving at an object and
the point in time when the object has finished executing the appropriate
method requested by the message

• Value Events: Point in time when the value of an object is being modified

• Time Events: Absolute points in time (e.g., 22:00:00, Feb. 28, 1995),
periodically reappearing events (e.g., every hour), or relative to occurring
events (e.g., one minute after event E1)

• Transaction Events: Defined by the beginning or termination of (user
defined) transactions

• Abstract Events: Events defined by users and applications according to
their specific semantics

The following composite events can be specified given two (composite or
primitive) events El and E2:

• (EIIE2): Occurs when either El or E2 occurs.

• (El,E2): Occurs when El and E2 occur, regardless of the order.

• (El;E2): Occurs when El and afterward E2 occurs.

• (-E1): Occurs when El does not occur in a specified (named) transaction
or in a predefined time interval.

www.manaraa.com

78 Chapter 4

In HiPAC17 three kinds of primitive events are defined: data manipulation
operations, clock time and external notifications, which roughly correspond to
value events, time events and abstract events in SAMOS, respectively. In addi
tion to the composite events just listed, HiPAC includes the closure constructor.
Specifically given an event E, the event E* is signaled after E has been signaled
an arbitrary number of times in a transaction.

The OMT employs data flow diagrams to construct the functional model.
Like the dynamic model, the functional model consists of a set of data flow
diagrams, one for each class and one for each process of the system. Each node in
a data flow diagram typically corresponds to an operation. A data store corre
sponds to a class or an object. Finally flows in a data flow diagram correspond to
information (including events) transferred between operations.

Example 4.2. (Ref. 18) Consider the object (class) diagram shown
below that describes a bank application.

J Transaction,~
Entered on Consists of

I date-time I

A Update
II Entry I I. cashier ,I I Remote 11

amount
station transaction transaction kind

I I I I I I

;\
Entered by

I I Concerns

ATM Icashle~1 IcashierIstation Startedb
cash on hand I I r--I name I
dispensed

Issues

Owns Owns
card

Has authorization
Em, loys Customer

IdF w~wword
name

~~ rs~l1
address

IHas~ e~oyeel cash cardConsortium ban~ Bank e
co e d bank-code

name ~t~
Account card-code

"""'"""~-!. serial number
balance Accesses

Holds credit limit
type

Object diagram for a bank application. Reprinted with permission from Ref. 18. © 1991,
Prentice-Hall.

www.manaraa.com

Design Methodologies and Specifications 79

enter
kind

account OK

cancel

Interrupt
do:canceled

message

bad
account

cancel

do:bad account message

insert card
{readable]

take
dca~

cancel
~------jdo: canceled

message

Main screen
do:displav main

screel'l

network responds

continue

terminate

cancel
enter amount

transaction
take cash succeed

,,-----'----... ;--------.... ;--------....
do:request

continuation
do:dispense cash;
request take cash

waitS
seconds

network responds =
account OK, bad account
bad bank code, bad password
transaction failed
transaction succeed

transaction ;-------....
failed

cancel

Figure 4.8. Dynamic model for the bank application. Reprinted with permission from Ref. 18. ©
1991. Prentice-Hall.

Figures 4.8 and 4.9 show the dynamic model of the ATM class and the
functional model of a transaction process that accesses an ATM, respec
tively. The semantics of the two diagrams should be clear to the reader.
Note that events in the dynamic model can be characterized as user
defined according to our earlier discussion.

www.manaraa.com

...:'

80

Consortium

-r-
bank code

card code

password

account type

amount. transaction kind

bad bank code

Chapter 4

"';'

Figure 4.9. Functional model for the bank application. Reprinted with pennission from Ref. 18. ©
1991. Prentice-Hall.

4.4. OBJECT-ORIENTED DESIGN METHODOLOGIES

In object-oriented design (000) method objects represent real-world soft
ware requirements. Objects contain both data and operations. An object can be
told to perform a specific operation through messages. This method provides for
data abstraction and data hiding. Operations that can be performed by an object
are known; however how the operations are accomplished is hidden. The follow
ing are the major steps involved in an object-oriented design methodology19.20:

1. Define the problem.

2. Develop an informal strategy (processing narrative) for the software
realization of the real-world problem domain.

3. Formalize the strategy using the following steps:

• Identify objects and their attributes.
• Identify operations that may be applied to objects.
• Establish interfaces by showing the relationship between objects and
operations.
• Decide on detailed design issues to provide an implementation descrip
tion for objects.

www.manaraa.com

Design Methodologies and Specifications 81

4. Repeat Steps 2-4 recursively. Previous steps are part of software re
quirement analysis; Steps 5-7 are design steps.

5. Refine the work done, looking for subclasses, message characteristics,
and other details.

6. Represent the data structure(s) associated with object attributes.

7. Represent the procedural detail associated with each operation.

Another methodology, called the object-modeling technique (OMT), was
introduced in Ref. 18. The methodology includes the following stages:

1. Analysis: A model of the real-world situation is built. The model consists
of three views: the object model, the dynamic model, and the functional
model, as described earlier.

2. System Design: A system is decomposed and structured into subsystems;
a subsystem is a package of object classes, associations, operations,
events, and constraints that are modular with respect to each other.
Although ideally all objects can be active at the same time, typically a
subsystem is the basic unit for concurrent processing; i.e., a subsystem
corresponds to a task in a concurrent program. Consequently at this stage
potential concurrency in the system has to be identified as a guideline to
forming subsystems. In addition databases and other global resources
have to be identified and how these are accessed has to be determined.

3. Object Design: This stage includes the following steps:

(a) Obtain operations for the objects based on system design.
(b) Design algorithms and data structures for the operations.
(c) Minimize the cost of data accesses, such as using indices or hashing,
for large set of data.

(d) Maximize inheritance.
(e) Determine how each association is implemented (e.g., as a class or an
operation).

(f) Determine the exact representation of object attributes.
(g) Package classes and associations into modules.

The following example, although not complete, attempts to illustrate the
different stages discussed in the OMT. It takes a bottom-up approach; i.e., it
starts an object-oriented solution with the finest granularity. Obviously a top
down approach (i.e., starting a solution with a large granularity) or a mixture of
both can be applied as well. Regardless if it is top-down, bottom-up, or a mix, a
solution must be object-oriented in nature (Le., in terms of objects and messages).

www.manaraa.com

82 Chapter 4

As shown in Example 4.3, it may be appropriate to call such informal solutions
object-oriented algorithms.

Example. 4.3. Consider the problem of displaying a set of three-dimen
sional objects on a two-dimensional screen of 256 X 256 pixels. A
solution is to first project the three-dimensional objects (with depth) to
the screen, then compute the density of each pixel based on the density
of the object not hidden by any other object with respect to the pixel
(i.e., whose depth is the smallest). Let us assume the finest granularity;
identify objects in this problem as three-dimensional objects and pixels.
An object-oriented approach assumes that each three-dimensional ob
ject is active. In addition each pixel (called a pixel object) is active. A
scene is composed from pieces of contributions made by the objects,
subject to available light sources and the position of the camera(s). For
simplicity assume that three-dimensional objects are convex. Each of
these can execute the following to compute its contribution to the scene:

let projection be the result of projecting and
clipping the obj ect;
send acknowledgment to each pixel obj ect in pro

jection;

Each of the pixel objects can execute the following to determine which
object occupies the pixel:

set depth = inf ini ty;
for each acknowledgment received from obj ect p do
{
if (p.depth< depth)
{
depth = p.depth;
occupied_by = p;

}
send a reply to p;

}

To make sure the program can terminate properly, let us assume
that there exists a controller object and each three-dimensional object
uses a counter to keep track of the number of the messages sent. Also
assume that all messages in the system are time-stamped and delivered
and processed according to the time stamp. The controller can execute
the following:

www.manaraa.com

Design Methodologies and Specifications

set count = 0;
send an init message to each 3D object;
while a done message is received from a 3D object
{
count++ ;
if (count == #object)
{
send a display message to each pixel obj ect;
stop;

}
}

On receiving an init message from the controller, each three-di
'mensional object can do the following:

let projection be the result of projecting and
clipping the object;
set count = 0;
set received = 0;
for each pixel object r in projection do
{
send acknowledgment to r;
count++ ;

}
while a reply is received from a pixel object do
{
received++ ;
if (received == count)
{
send a done message to controller;
break;

}
}

The algorithm for each pixel object is modified accordingly:

set depth = inf ini ty;
while receiving a message do
{
if the message is an acknowledgment message from

an object p;
{
if(p.depth < depth)

83

www.manaraa.com

84 Chapter 4

{
depth = p.depth;
occupied_by = p;

}
send a reply message to p;

}
else if the message is a display message from

the controller
{
display the pixel according to occupied_by;
break;

}
}

The preceding program constitutes an informal specification of an
object-oriented solution to the problem. In the specification objects,
their associated events and operations, and the dynamics of the solution
are identified. It should be straightforward to convert the specification
into an object model, a dynamic model, and a functional model, as
required by the OMT to complete the analysis stage.

The next step is the system design stage according to the OMT. At
this stage system performance is taken into consideration, and packages
(logical processes) are formed. This is quite an obvious requirement in
Example 4.3, since an excessive amount of communication is needed
among the large number of objects (Le., three-dimensional objects and
256 X 256 pixel objects). One possible approach is to group the pixel
objects into a process called screen so that computations within screen
are sequential. By doing this all pixels are implemented as records (i.e.,
passive objects). The object-oriented solution can then be modified as
follows:

Controller
set count = 0;
send an ini t message to each 3D obj ect;
while a done message is received from a 3D object
{
count++ ;
if (count == #object)
{
send a display message to screen;
stop;

}
}

www.manaraa.com

Design Methodologies and Specifications

On receiving an init message from the controller, each three-di
mensional object can do the following:

let projection be the result of projecting and
clipping the obj ect ;
send proj ect ion to screen;
if a reply is received from screen do
send a done message to controller;

The screen object executes the following:

for each pixel (x,y) do
set depth = inf ini ty;
while receiving a message do
{
if the message is an acknowledgment message

from an obj ect p
{
for each pixel (x,y) do
if (x,y) belongs to the projection of p
{
if(p.depth < (x,y) .depth)
{

(x, y) . depth = p. depth;
(x,y) . occupied_by = p;

}
}
send a reply message to p;

}
else if the message is a display message from

the controller
{
display the screen;
break;

}
}

An alternative way of grouping is to cluster three-dimensional
objects into a single process while leaving pixel objects active. Yet
another approach is to cluster pixel objects into several groups so that
each group corresponds to an area on the screen.21 The programmer
must decide which approach to take based on available resources. Sim
ulations or some performance analysis may have to be performed. It
should be obvious to the reader that the decision made at this stage

85

www.manaraa.com

86 Chapter 4

affects object structures in the implementation. For example in the pure
object-oriented solution (i.e., all pixels and three-dimensional objects
are active), each pixel has the capability of looping on itself and inter
preting messages, while in the second solution (i.e., all pixels are
grouped into a screen object), each pixel is passive, and a new object
(and its associated methods) has to be provided.

The last stage according to the OMT is object design. At this stage
object structures are finalized, implementation detail for each object
class are determined, class inheritance is determined, and optimization
is completed. For example, if the second solution is taken, pixels associ
ated with the screen object can be implemented as an array, a hash table,
or a linked list (although it is obvious in this case). Parameters needed
for each type of messages (i.e., acknowledgment, reply, display, etc.)
are determined, and so on.

In addition to Refs. 18 and 20, object-oriented methodologies are discussed
in Refs. 22 and 23. As suggested in Ref. 18, "All of the object-oriented meth
odologies, including ours, have much in common, and should be contrasted more
with non-object-oriented methodologies than with each other" (p. 274). The
reader is encouraged to map the steps identified in Example 4.3 to the Booch
methodology (see Problem 4.6).

4.5. DESIGN VERIFICATION AND CASE TOOLS

Once a design is finished, it is important to verify that the design incorpo
rates every aspect stated in the requirements specification; it is also important to
verify that the design itself is consistent (i.e., no contradictions). A number of
CASE tools are available in the commercial market to support structured design
methodology. Such CASE tools are referred to as Upper CASE tools.

A popular graphical design tool in the UNIX environment is Software
through Pictures (StP) by Interactive Development Environments (IDE),24 which
runs on workstations and makes efficient use of their windowed interfaces and
graphic capabilities. The StP consists of a collection of editors that draw such
objects as structure charts, data structures and data flow diagrams. These editors
are usually used jointly to represent a system. For example the data flow editor
(DFE) can be used to represent data flow diagrams for the system, and the data
flows can be linked to data structures drawn using the data structure editor
(DSE). A brief description of each of the editors follows.

• Structure chart editor (SeE): Supports software architecture design, in
cluding input and output parameters for every module in the system, by

www.manaraa.com

Design Methodologies and Specifications 87

creating and using structure charts; also checks for consistency between
input and output parameters.

• Data structure editor: Supports definition of such data items as object
name and type; also generates types and data declarations in C.

• Data flow editor: Supports creating, changing, and updating data flow
diagrams; also checks for incompleteness, invalid diagrams of designs,
and the level and ancestry of nodes.

• Control flow editor (CFE): Supports creating, changing and analyzing
control flow diagrams.

• Transition diagram editor (TDE): Takes care of interactive changes and
creations. For example TDE allows the description of screen layouts,
inputs causing transitions, and output prompts. One of its more important
facilities is that it automatically generates an executable version of the
dialog, represented by a transition diagram. This executable file can be
used as a prototype.

• Entity relationship editor (ERE): Automatically creates a relational
database schema given an entity relationship diagram.

• Picture editor: Used for drawing; provides many commonly used sym
bols.

• Graphical output: Outputs from any of the StP editors can be generated in
several formats, such as pic and postscript.

TurboCASE,25.26 a CASE tool made for Apple Macintosh, includes com
prehensive coverage of functions needed for requirements specification and anal
ysis. Some of these include data modeling, techniques for structured design, and
object-oriented analysis. To support these TurboCASE allows many diagrams to
be produced by the user, such as data flow, control flow, state-transition, entity
relationship, structure charts (sq, decision tables, control specifications, and
minispecifications. TurboCASE also allows the user to draw flowcharts, block
diagrams, and ordinary organization charts. All objects created by the user are
integrated using a central data dictionary that ties them together. Needless to say
Macintosh software, which uses object-oriented pop-up menus for frequently
used modeling commands provides extraordinary ease of use.

Another feature of this software is its structured design methodology, whose
basic modeling mechanism is structure chart. This shows how software works by
depicting program modules, their hierarchical structure, and how they interface.
Structure charts provide the ability to link to specification tables, which in tum
allow the user to define details of each module and interface. TurboCASE elimi
nates using traditional couples to specify parameters passed between modules.

www.manaraa.com

88 Chapter 4

Instead pop-up tables show how parameters are passed between modules and
which parameters a particular module accepts.

Design Generator is a fully integrated CASE tooF7 that assists in specifying
what the system has to do and in verifying this specification for accuracy and
completeness. This tool automates the requirements specification/analysis phase
and integrates it with other phases of the software life cycle. There is a rule base
in the tool that allows specification inputs presented in a strict format. This
reduces specification ambiguity, since a system analyst must comply with the
format when inputting specifications. Design Generator automates requirements
specification and design phases of the software development cycle by providing
an appropriate design based on specification analysis. A central repository infor
mation from all phases together and cross-references to identify stores discrepan
cies and conflicts.

Like procedure-oriented software, a number of CASE tools are available on
the market to support one or several of the object-oriented design methodologies
discussed earlier. For example Software through Pictures/OMT (StP/OMT)27 is
an object-oriented extension of StP that supports OMT. The StP/OMT has an
object model editor, a dynamic model editor, and a functional model editor that
allow the object, model, and functional models to be visually constructed. Class
interface and definition files can be generated automatically from object models.
The StP/OMT stores the semantics of all diagrams in a multiuser, shared reposi
tory built on top of a commercial DBMS. The environment offers the following
features for design checking:

• Verifies that all classes and associations are appropriately modeled and
meaningfully named

• Flags cycles in generalization hierarchies, illegal join classes, and incon
sistent inheritance relationships

• In the dynamic model, checks the logic of how objects of a class change
state by ensuring that a superstate has only one initial state and only one
exiting transition; flags (a) states with nondeterministic transitions, (b)
split flows not destined for concurrent activities, or (c) merged flows not
originating from concurrent activities

• Ensures completeness within the object model by scanning each class to
be sure that it (a) appears in at least one object model diagram and (b) has
a class table definition and at least one attribute or operation

• Assures completeness and consistency between the object and dynamic
models; endures that (a) all classes have a dynamic model, (b) operations
modeled in a class map to activities in a dynamic model, (c) send events in

www.manaraa.com

Design Methodologies and Specifications 89

a dynamic model have a corresponding operation in a receiving class, and
(d) dynamic models are not orphaned

• Assures completeness and consistency between the object and the func
tional models; ensures that (a) all operations have functional models, (b)
class or operation attributes correspond to data flows or data stores in the
functional model, and (c) all operations in a functional model belong to a
class.

Other CASE tools, such as Paradigm Plus,27 offer features more or less compati
ble with those of StPjOMT.

PROBLEMS

1. Consider an inserting machine and a robot in a factory that cooperate to
insert parts into a printed circuit board (the robot places a board on the inserting
machine, then removes it once the insertion is done). Clearly the inserting ma
chine and the robot controller have to work in an interlock manner. Design a
controller for the robot and the inserting machine using the structured design
methodology. Assume that the following simplified communication primitives
are used-send(q,c) means that object c is sent to process q, and received(c)
means that object c is received.

2. Transform the design obtained in Problem 1 into a flowchart. Label the
flowchart with the distinctive states for the inserting machine and the robot.

3. Describe the behavior of the controllers in terms of a Petri Net.

4. Given a flowchart of a program, can a procedure be provided so that it
automatically converts the program into a Petri Net?

5. Design a voice mail system using the structured design methodology.

6. Map the approach described in Example 4.3 into the Booch methodol
ogy. Subsequently compare the OMT and Booch methodologies.

7. Develop the finite-state model for each three-dimensional object and
each pixel object. Also develop a data flow diagram for the graphics systems
discussed in Example 4.3.

8. Write an object-oriented algorithm with the finest granularity to realize
the ray-tracing algorithm. Ray tracing is another technique that can be applied to

www.manaraa.com

90

view point

Chapter 4

Figure 4.10. The Ray-tracing algorithm.

three-dimensional graphics. In the original ray-tracing algorithm, rays are traced
from the view point through each pixel of the virtual screen and into the environ
ment (see Figure 4.10), i.e., in the reverse direction from that in which rays of
light propagate in a physical environment. Of all the objects that intersect with
the ray, the closest of which corresponds to the visible surface.

9. Complete an object-oriented version of the ray-tracing algorithm with
system design and object design.

10. Use a top-down approach in Problems 8 and 9.

REFERENCES

I. Wirth, N. Communication ACM 14:4. 221-227 (1971).
2. Dijkslra, E. W. Communications of the ACM 11:5, 341-346 (May 1968).
3. Parnas, D. L. "Information distribution aspects of design methodology." Proc., IFlP Congress
(Ljubljana, Yugoslavia, 1971), pp. 339-44.

4. Stevens, W. P., Myers, G. J., and Constantine, L. L. IBM Systems Journal 13:2, 115-139 (1974).
5. Osterweil, L. "Software processes are software too." Proc. ofthe Ninth International Conference

on Software Engineering (Monterey, CA, Apr. 1987).
6. DeMarcio, T. Structured analysis and system specification (Yourdon, Englewood Cliffs, NJ,
1978).

7. Ward, P. T., and Mellor, S. J. Structural development for real-time systems, vols. 1-3 (Yourdon
Press, Englewood Cliffs, NJ, 1985).

8. Hatley, D. J., and Pirbhai, I. A. Strategies for rea/-time system specification (Dorset House, New
York, 1987).

9. Hatleg, R., Software Processes (Prentice-Hall, Englewood Cliffs, NJ, 198\).
10. Alford, M. IEEE Computer 18:4, 36-46 (Apr. 1985).
I I. Loshbough, R. P. DCDS methodology capability demonstration, vol. 2. TRW System Develop
ment Division, Defense Systems Group, Huntsville Operations, (Huntsville, AL, Jan. 1987).

12. Stay, J. F. IBM Systems Journa/15:2, 143-154 (1976).

www.manaraa.com

Design Methodologies and Specifications 91

13. Tichy, W. F. IEEE Transactions on Software Engineering SE-5.1, 29-41 (Jan. 1979).
14. Teichroew, D., and Hershey, E. IEEE Transactions on Software Engineering SE·3.1, 41-48
(Jan. 1977).

15. Ross, D. T. IEEE Transactions on Software Engineering SE·3:1, 2-5 (Jan. 1977).
16. Gatziu, S., Geppert, A., and Dittrich, K. R., "Integrating active concepts into an object-oriented
database system." Proc., the Third International Workshop on Database Programming Lan
guages (Nafplion, Aug. 1991).

17. Dayal, U., Buchmann, A. P., and McCarthy, D. R. Proc., second international workshop on
object-oriented database systems (Dittrich, K. R., ed.) Lecture Notes in Computer Science 334
(Springer, New York, 1988).

18. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-oriented modeling
and design (Prentice-Hall, New York, 1991).

19. Booch, G. IEEE Transactions on Software Engineering SE·12:2, 211-221 (Feb. 1986).
20. Booch, G. Object oriented design with applications (Benjamin/Cummings, Redwood City, CA,
1991).

21. Green, S. Parallel Processing for Computer Graphics (MIT Press, Cambridge, MA, 1991).
22. Shlaer, S., and Mellor, S. Object-oriented systems analysis (Yourdon, Englewood Cliffs, NJ,
1988).

23. Coad, P., and Yourdon, E. Object-oriented analysis (Yourdon, Englewood Cliffs, NJ, 1991).
24. Frakes, W. B., Fox, C. 1., and Nejmeh, B. A. Software engineering in the UNIX/C environment
(Prentice-Hall, New York, 1991).

25. Oman, P. W. IEEE Software 7:5,37-43 (May 1990).
26. Oman, P. W. IEEE Software 7:1, 133-135 (Jan. 1990).
27. Computer Science Corporation. Software World 19:4, 15-20 (Apr. 1988).
28. Blake, 1. Advanced Systems 84 (June 1994).

www.manaraa.com

5

Programming and Coding

Chapter 5 discusses some fundamentals of object-oriented programming lan
guages (Section 5.1) and distributed programming languages (Section 5.4). It
also specifically summarizes the major features of two object-oriented program
ming languages: C+ + (Section 5.2) and SMALLTALK (Section 5.3), and one
distributed programming language, namely, OCCAM and its predecessor csp (Sec
tion 5.5). Although there are other object-oriented languages (e.g., ACTOR l and
EFFEL2 and distributed programming languages (see Section 5.4), these three
languages are chosen to illustrate some basic ideas behind object-oriented pro
gramming and distributed programming. It is assumed that the reader is familiar
with c.

5.1. OBJECT-ORIENTED PROGRAMMING LANGUAGES

Reference 3 discusses design issues for object-oriented programming lan
guages. This section summarizes the following dimensions of the object-based
design space: objects, classes and types, inheritance and delegation, data abstrac
tion, strong typing, concurrency, and persistence.

5.1.1. Objects

Functional, imperative, and active objects are, respectively, like values,
variables, and processes.

5.1.1.1. Functional Objects

Functional objects have an objectlike interface, but no identity that persists
between changes of state. Their operations are invoked by function calls in
expressions whose evaluation is side-effect-free, as in functional languages.

5.1.1.2. Imperative Objects

Imperative objects are traditional objects as defined in SIMULA, SMALLTALK,
or C+ +. They have a name (identity), a collection of methods activated by

93

www.manaraa.com

94 Chapter 5

receipt of messages from other objects, and instance variables shared by object
methods but inaccessible to other objects. Mainstream object-oriented languages,
such as SMALLTALK, have imperative objects, so these languages may be referred
to as imperative object-oriented languages. When used without qualification, the
term object or object-oriented language generally implies that objects are impera
tive.

5.1.1.3. Active Objects

Imperative objects are passive unless activated by a message. In contrast
active objects may be executing when a message arrives. Active objects have the
following modes: dormant (there is nothing to do), active (executing), or waiting
(for resources or the completion of subtasks). Message passing among active
objects may be asynchronous.

5.1.1.4. Actors

An actor has a mail address, an associated mailbox that holds a queue of
incoming messages, and a behavior that at each computation step may read the
next mailbox message and perform one of the following actions: create new
actors, send communications (messages) to other actors (its acquaintances), or
become a replacement behavior for executing the next message in the mailbox.
Newly created actors initially have an empty mailbox and a behavior specified by
a script.

5.1.2. Types

Types are useful in classifying, organizing, abstracting, conceptualizing,
and transforming collections of values. Types are specified by predicates over
expressions used for type checking, and types determine a type checking inter
face for compilers. However classes are specified by templates that determine a
system evolution interface and are types. Many object-oriented languages have
abandoned types in favor of classes. Classes represent behavior. Inheritance
facilitates composing incomplete behavior. Object-oriented database languages
keep track of the set of all instances of a class and allow operations made to such
instances.

5.1.3. Inheritance

Inheritance is a mechanism for sharing code and behavior. Multiple inheri
tance facilitates sharing by a descendant of the behavior of several ancestors.
There are four design dimensions for inheritance: modifiability, granularity, mul
tiplicity, and quality.

www.manaraa.com

Programming and Coding

5.1.3.1. Inheritance As an Incremental Modification Mechanism

95

Incremental modification is a fundamental process not only in software
systems but also in physical and mathematical systems. Incremental modification
of software systems by inheritance spans two distinct notations: refinement and
similarity (likeness). There are four progressively powerful mechanisms for
modifying attributes of a parent class: behavior compatibility, signature compati
bility, name compatibility, and cancellation.

5.1.3.2. Granularity of Inheritance

Uniform inheritance of several kinds of behavior by all instances of a class
can be accomplished by multiple inheritance; differential inheritance of behavior
requires a finer granularity of sharing at the level of individual objects. Behavior
sharing at the level of objects is referred to as delegation. Objects may delegate
responsibility for performing nonlocal operations to parent instances, called pro
totypes, that serve both as instances and as templates for behavior sharing and
cloning other instances. Prototyping languages do not distinguish between be
havior and values at the language level, and they may use inheritance to share
both behavior and values. Languages based on prototypes eliminate the need for
classes, thereby reducing the number of primitive language concepts, which
could be dangerous. Classes separate concerns of structure and behavior from
those of execution time computation. Classes are required when the number of
instances increases.

5.1.3.3. Single versus Multiple Inheritance

The real world abounds in situations of multiple inheritance. In software
multiple inheritance is conceptually difficult, since there are so many ways of
combining inherited entities when designing a new entity. There are problems in
linearizing multiple inheritance hierarchies because a class may become sepa
rated from its immediate parents by intervening classes that disrupt communica
tion.

5.1.3.4. What Should Be Inherited? Behavior or Code?

Behavior and code hierarchies are rarely compatible, and they are often
negatively correlated because shared behavior and shared code have different
requirements.

5.1.4. Strongly Typed Object-Oriented Languages

Programming languages in which the type of every expression can be deter
mined at compile time are statistically typed languages. Languages in which all
expressions are type-consistent are called strongly typed languages. Whether a

www.manaraa.com

96 Chapter 5

language should be strongly typed or not depends on the importance of the
structure versus flexibility. SMALLTALK compromises on this issue, supporting
class abstraction but not strong typing. Languages like c++ are strongly typed.

5.1.5. Models of Concurrency

Object-based concurrent programming combines object-based and concur
rent paradigms. It combines the object-based notions of encapsulation, classes,
and inheritance with concepts of threads, synchronization, and communication.
Objects mesh nicely with concurrency, since their logical autonomy makes them
a natural unit for concurrent execution. However concurrent sharing is more
complex than sequential sharing. The goal of both sequential and concurrent
object-based programming is to model the real world directly and naturally.

5.1.5.1. Process Structure

Processes are active objects that must synchronize with messages arriving
from other active objects. Design issues for processes include protection and
encapsulation, tasks versus monitors, logical versus physical distribution, and
weak versus strong distribution.

5.1.5.2. Unprotected versus Encapsulated Data

In an object-based model, input and output buffers are server processes
responsible for their own protection. Input and execute (client) processes no
longer need to use low-level primitives to protect data in the input buffer. ADA
tasks and monitors illustrate two distinct forms of interaction between calling
clients and called server processes.

5.1.5.3. Logical versus Physical Distribution

A system of modules is logically distributed if each module has its own
separate name space. Local data are not directly accessible to other modules.
Conversely modules cannot directly access nonlocal data but must communicate
with other modules by messages. Physical distribution usually implies logical
distribution, since physical separation is most naturally modeled by logical sep
aration. Object-based systems are logically distributed, but these are usually
implemented on nondistributed computers. Logical distribution supports autono
my of software components and thereby facilitates concurrent execution.

5.1.5.4. Weakly and Strongly Distributed Systems

A system is weakly distributed if its modules know the names of other
modules. It is strongly distributed if its modules cannot directly name other
modules. Traditional object-oriented languages are weakly distributed.

www.manaraa.com

Programming and Coding 97

5.1.5.5. Internal Process Concurrency

Processes of object-based concurrent systems may be internally sequential,
quasi-concurrent, or fully concurrent.

5.1.5.6. Synchronization

For unprotected data synchronization must be performed by each process
that accesses the data. Synchronization may require cooperative protocols: For
example using semaphores to specify mutually exclusive accesses to critical
regions. Protected data assume responsibility for their own protection, removing
the burden from processes that access data. Object-based systems focus on syn
chronization for protected data. There are three kinds of synchronization mecha
nisms: rendezvous, conditional variables, and locking.

5.1.5.7. Asynchronous Messages, Futures and Promises

Design alternatives for message passing include synchronous, asynchro
nous, and stream-based message passing. Synchronous message passing, which
requires the sender to suspend until a reply is received, is essentially remote
procedure call. Asynchronous message passing allows the sender to continue, but
requires synchronization if subsequent execution depends on the reply. Steam
based message passing supports streams of messages that likewise require syn
chronization at message-use time to check that replies have been received. Asyn
chronously computed results may be handled by data structures created at the
time of message-send.

5.1.5.8. Interprocessing Communication

Design alternatives for interprocess communication include two-way inter
connected distributed processes, one-way interconnected client/server processes,
and dynamically interconnected strongly distributed processes. In strongly dis
tributed processes, the names of nonlocal ports are stored as data in local port
variables, so connection to other processes is dynamic.

5.2. c+ +

One of the disadvantages of regular c is that data structures are not extens
ible; i.e., new data types can be built only from fundamental data types. Further
more there is no provision for operator overloading. The c+ + overcomes both of
these shortcomings. It is a superset of c. It was primarily designed to be a better c
and support data abstraction and object-oriented programming.
The c+ + code is centered around the notion of class and object. Each class

has an associated set of data and functions. The c+ + also allows several levels

www.manaraa.com

98 Chapter 5

of protection for data and members. One major disadvantage of c++ is that it
does not have a good mechanism for passing messages between objects. The
following summarizes some major features of c+ +; details of c+ + can be
studied in Ref. 4.

5.2.1. Program

A c+ + program usually consists of a number of classes, and each class
consists of a number of attributes (members) and member functions. A program
may also contain a number of globals and global functions. Among the global
functions, one is called main; this is the main function of the program. It starts
and terminates the control flow of the program.

5.2.2. Classes

A c+ + class is an extension of a c structure that realizes the concept of data
types. This class consists of a number of fields, called members, and a number of
functions, called member functions. Depending on how they are accessed, mem
bers and member functions are divided into three categories: private, public, and
protected. Public members can be accessed (called) by any other function; pri
vate and protected members can be accessed (called) only by member or friend
functions. A friend function of a class can be any (global or member of another
class) function declared to be a friend of the class. A simple form of class
declaration follows:

class <new_class_name> {
private members and functions
protected:
protected members and functions
public:
public members and functions
}

Members and member prototypes are declared in the same way as in c:

<class_name> <member_name> , <member
_name>;
<class_name> <member_function_name> (argu-
ments) ;

The body of a member function is usually declared separately in the following form:

www.manaraa.com

Programming and Coding

<class_name> <class_name>: : <member_function
_name> (arguments)
{
/ / body

}

99

The first class name specifies the type of the returned object, and the second class
name specifies the type to which the function belongs.

Once a class is defined, it can be instantiated by declaring objects of the
class as in c. Pointers to the class can also be declared as in c. A member m of an
object a is accessed by another object with the notation a.m; this member is
accessed as m directly within the same object. A member functionj of a is called
by another object as af (arguments); it is accessed as j directly within the same
object. A member m of an object pointed to by a pointer p is accessed by the
notationp ~ m; a member functionjof the object is called as p ~ j(arguments).

The member function named after the class name is called the constructor
function. The constructor function realizes any customized initialization process
when an object is declared to be an instance of the class. The member function
named after the class name but proceeded by the symbol - is called the destruc
tor of the class. The destructor of a class is automatically called when an object is
freed. Both the constructor and the destructor of a class return no object (void),
but they may take some arguments; their definitions are optional. If a constructor
is defined to take some arguments, the arguments are supplied when an object is
declared.

Example 5.1. The following is a simple c+ + program:

#include <stdio.h>
class first {
int first_i;
float first_f, first_ff;
first *first_next;
protected:
float first_pf;
public:
int first_op;
void first (int n) ;
void -first (void) ;
float get_f (void) ;
void assign_f (float f) ;

}
void first: :first(int n)
{

www.manaraa.com

printf (" freeing first") ;

first_f = f;

100 Chapter 5

first_i = n;
printf (" initializing first with %d", n) ;

}
void first: : -first (void)
{

}
float first: : get_f (void)
{
return first_f;

}
void first: : assign_f (float f)
{

}
int good_friend (first f)
{
printf (" i is %d" , f. i) ;
}
int main (void)
{
/* note that any single-line corrunent inC++ can

be started by two slashes * /
first a (6), *b; / / a has 6 as the val of first_i
b = new first (4) ; / * This is dynamic initializ

ation * /
/ / *b has 4 as the val of first_i

a.assign_f(3.67) ;
b->assign_f(4.55) ;
print ("the first_f of a is %f" ,a. get_f ()) ;
printf ("the first_f of b is %f", b->get_f ()) ;
good_friend (a) ;
good_friend (*b) ;

}

5.2.3. Inheritance

A c+ + class can be derived from a number of other c+ + classes as follows:

class <class_name> : <access> <inherited_class>
... <access> <inherited_class>

www.manaraa.com

Programming and Coding

{
/ / members and member functions
}

101

Each of the inherited classes is called a base class with respect to the class
defined. For each base class, if <access> is public, the child class inherits all
public/protected members and member functions from the inherited class as
public/protected members and member functions. If <access> is private, the
child class inherits all public/protected members and member functions from
the inherited class as private members and member functions. In both cases the
private part of the inherited class is not inherited.

When an object is declared to be an instance of the derived class, the
constructor of the derived class (if it exists) is called first, then the constructor of
the first base class is called, and so on. As long as no base class takes an
argument, the derived class does not have to provide a constructor function.
However, if a base class requires an argument, the derived class must provide a
constructor function, which again takes arguments, so that arguments can be
passed to those constructors of base classes that require them. Destructors are
called in the reversed order. The c+ + allows a pointer that is declared to be a
pointer to a base class to be used as a pointer to the derived class.

A function of a base class can be declared to be a virtual function so that any
derived class of it can refine the virtual function. A virtual function is declared in
the following format:

virtual <class_name> <function_name> (argu
ments) ;

When refined in a derived class, the keyword virtual is dropped. This feature is
called function overriding. By using this feature, a generic function can be
defined to a generic class, and its specifics do not have to be given until the
generic class is fully specialized.

Example 5.2. In the following, class C is derived from classes A and B.
Based on the inheritance rules, C has the following public members: pa
(inherited from A), pb (inherited from B), and caa (added by itself);
class C has the following public member functions: evaluate (inherited
from A and refined in C), A::A (inherited from A), B::B (inherited from
B), and C and geLca (added by itself). Note how C::C is specified: It
takes one argument that is passed to A::A.

#include <stdio. h>
class A {

www.manaraa.com

102 Chapter 5

int in1 1 in2 lout;
protected:
int pa;
public:
virtual int evaluate (void) ;
void A (int n);
}
class B {
float ba;
protected:
int pb;
public:
void B (void) ;

}
class C : public AI public B {
int cal cb;
public:
int caa;
void C (int r);
int evaluate (void);
int get_ca (void) ;

}
void C::C (int r) : A(r) I B() {
/ / some code

}
int C: : evaluate (void)
{
return ca * cb / pb * pa;

}
void main (void)
{
A *ptc; / * note that a pointer to A can be used as a

C pointer below * /
ptc = new C (2) ;
ptc->ca = 12;
ptc->cb = 3;
ptc->pa = 4;
ptc->pb = 9;
printf ("The val is %d" I ptc->evaluate ()) ;
}

www.manaraa.com

Programming and Coding

5.2.4. Operator Overloading

103

The c+ + allows such operators as +, -, = (assignment), and = = to be
overloaded (Le., defined separately but using the same name) for different classes
of objects. An operator can be redefined for a class as follows:

<class_name> <class_name>: : operator <operator_
name> (arguments)

where the first class name designates the type of the returned object, and the
second class name designates the class to which the operator is defined. The
precedence, the number of arguments, and the associativity of an operator cannot
be changed by overloading.

Example 5.3. Consider the following:

#include <stdio. h>
class twoD {
int x,y;
public:
twoD operator + (twoD t) ;
twoD operator = (twoD t);
void twoD (int a, int b) ;
}
twoD: :twoD(int a, int b)
{
x = a;
y = b;
}
twoD twoD: : operator + (twoD t)
{
twoD a;
a.x=x+t.x;
a.y=y+t.y;
return a;

}
twoD twoD: :operator = (twoD t)
{
x = t.x;
y=t.y;
return (this); /* note that this is a special

pointer that points to itself * /
}
void main (void)

www.manaraa.com

104

{

}

Chapter 5

twoD ta(l,2) ,tb(2,3) ,tc(O,O);
tc = ta + tb; / / tc.x is 3 and tc.y is 5 now
ta = tb; / / ta.x is 2 and ta.y is 3 now

5.3. SMALLTALK

In the early 1970s, the Xerox Palo Alto Research Center (PARe) Learning
Research Group (later the Software Concepts Group [SCG]) began research that
eventually paved the way for many modem programming tools used today. The
group began to

concentrate on two principal areas of research: a language of descrip
tion (a programming language) which serves as an interface between
the models in the human mind and those in computing hardware, and
a language of interaction (a user interface) which matches the human
communication system to that of the computer. (Ref. 5)

This research was realized as a system called SMALLTALK.6 In 1972 the first
SMALLTALK system, loosely based on the SIMULA language, was implemented.
This system was then continually tested, refined, and redesigned until its eventual
release to the outside world as SMALLTALK-80.

The SMALLTALK-80 is such a rich system that it is difficult to present all of
its components completely. It is a programming language and a programming
environment. The SMALLTALK also contains much of the functionalities normally
found in operating systems, including storage management, a file system, display
handling, text and picture editing, keyboard and pointing device input, a debug
ger, a performance spy, processor scheduling, compilation, and decompilation.5

The traditional approach to program development can be described as mod
ular-programming is achieved by advancing through a sequence of modules.
Normally these modules consist of an editor, compiler, linker, and run-time
debugger. Each module is a separate entity. A normal sequence consists of
loading the editor, entering code, leaving the editor, executing the compiler,
executing the linker, and running a debugger. The drawback is that a mode
change requires exiting to the operating system to load the next module. Al
though some modem systems allow mode switching without exiting to the oper
ating system, each module is still a separate entity. For example, most program
ming systems are composed of a number of separate command line tools: editor,

www.manaraa.com

Programming and Coding 105

compiler, etc. All of these tools can be integrated into some type of shell;
nevertheless they are separate programs.

The SMALLTALK system achieves a total integration of tools: Every tool is an
integral part of the environment, and it is available at all times. Not too long ago
this concept would have been dismissed as impossible. SMALLTALK achieves
such integration through the use of a windows, icons, menu, and pointer (WIMP)
based user interface.

SMALLTALK is an object-oriented language. Programming in this type of
language promotes three ideas:

An interactive, incremental approach to software development can produce
qualitative and quantitative improvements in productivity.

Software should be designed in units that are as autonomous as possible.

Developing software should be thought of in terms of building a system
rather than as black box applications.

The SMALLTALK language was based on the concepts of object, message,
class, instance, and method, as described in Section 2.1. The classical example
demonstrating these ideas is as follows. Take the expression 1 + 5. We normally
view this as an addition operation with two operands, 1 and 5. Note that the
addition operator is dominant. SMALLTALK consists entirely of objects and mes
sages. Looking at the expression as an object-message relationship then, we see
an integer object 1 receiving the message + 5. The receiver of the message, in
this case the object 1, determines how the expression is evaluated. In SMALL
TALK, object 1 is dominant. In the classical example, I and 5 are examples of
literal objects. Literal objects can be used to describe numbers, symbols (charac
ters), strings, and arrays.

All variables in SMALLTALK are pointers to objects. Variables are not typed;
A variable can point to any type of object. Assignment statements (or messages)
merely change the object that a variable points to. For example the statement x
<- I means that integer object I is bound to (pointed to by) x; the statement x <
y means x is bound to the same object that y is bound to; and x <- x + 1 means
that the message + I is sent to the object bound to x: The object returned is then
bound to x. In addition to messages that consist of such operators as + and <-,
SMALLTALK also allows keyword messages. For example x equals: y, 2 factorial,
or 12.48 rounded. Consider the following program, which computes the sum of
the first 100 integers7 :

sum <- O.
number <- 1.
[number <= 100] whileTrue: [

www.manaraa.com

106

sum < - sum + number.
number < - number +1] .

sum

Chapter 5

The SMALLTALK version of the while .. do statement is interpreted as
follows:

• The message whileTrue: [...] is sent to the block [number <= 100].

• In response to the whileTrue: message, the receiver, the block [number
<=100] evaluates itself.

• If evaluating the block returns the object true, the whileTrue: argument
block is evaluated and the whileTrue: message is again sent to the block
[number <= 100], and steps 1, 2, and 3 are repeated.

The true power of SMALLTALK lies within its huge system class library.
There are classes of almost every imaginable type. An incomplete list follows8 :

• Magnitude: Includes characters, dates, numbers, time, and mathematical
functions.

• Stream: Includes input and output streams.

• File/Directory

• Collection: Includes such data structures as arrays, linked lists, trees,
strings, ordered collections, and sets.

• Windows

• Graphics: Includes geometric shapes, mathematical functions, bitmaps,
and animation.

Example 5.4. This example is a slight modification from an article in
Byte magazine (Aug. 1986). The article itself was adapted from the
book A Taste of Smalltalk.9 The towers of Hanoi is a classic computer
problem used to demonstrate recursion in many computer texts. The
towers of Hanoi problem involves moving a number of disks, each
having a different diameter, from one peg to another. There are a total of
three pegs. Initially all disks are stacked on one pin in order of increas
ing diameter. The goal is to move all disks from the first pin to the third
pin. The catch is that no disk may ever be placed on top of a smaller one.
This is why there is another pin.

The c+ + program that follows gives the basic solution to the
problem:

www.manaraa.com

Programming and Coding

void move_disk (int from_pin, int to_pin)
{
cout «from_pin « "->" «to_pin «endl;

}
void move_ tower (int from_pin, int height, int

to_pin, int using_pin)
{
if (height> 0)
{
move_tower(height-1,from_pin,to

_pin, using_pin) ;
move_disk (from_pin, to_pin) ;
move_ tower (height -1, us ing_pin, to_pin,

from_pin) ;
}

}
void main()
{
int total;
cin » total;
move_tower (total, 1, 3. 2);

}

The SMALLTALK solution to the towers of Hanoi program follows:

moveTower: height from: fromPin to: toPin using:
usingPin
"Recursive procedure to move the disk at a height

from one pin to another using a third pin"
(height> 0) ifTrue: [
self moveTower: (height -1) from:
fromPin to: usingPin using: topin.
self moveDisk: fromPin to: topin.
self moveTower: (height -1) from:
usingPin to: topin using: fromPin]

"moveDisk:to: method"
moveDisk: fromPin to: toPin
"Move disk from a pin to another pin.
Print results in the transcript window"
Transcript cr.
Transacript show: (fromPin printString,

'->' , topin printString) .

107

www.manaraa.com

108 Chapter 5

A SMALLTALK procedure is called a method. As shown each part of
a method name ends with a colon, then the argument it describes fol
lows. The four words ending in colons in the first line of the SMALLTALK
program are the four parts of the name of the method being defined. The
actual name of this method is move-Tower:from:to:using:. This method
uses calls to three other methods (itself twice and moveDisk:to: once). It
may be easier to think of the SMALLTALK method as a function name
followed by its parameters, for example, moveTower:from:to:using:
(heightfromPin,toPin,usingPin). All of these arguments are local
names.

Text between double quotes is a comment. Next is an expression
(height> 0) that is evaluated as true or false. The SMALLTALK if state
ment is like its c counterpart except that the Boolean expression pre
cedes instead of follows the if. Next is a block of three statements. The
SMALLTALK surrounds a block with square brackets instead of using c's
curly braces. Periods separate statements instead of semicolons.

To see how the program is executed, recall that SMALLTALK has
exactly one way of working: It sends messages to objects. A message is
a message selector with its operands. The object that receives a mes
sage, the receiver, appears just to the left of the message. In the sample
program, everything that is not an object (comments, brackets, periods)
is a message selector. The SMALLTALK returns a value as the result of
each method. These results are also objects. For example height -]
returns an integer object, and height >0 returns a Boolean object. When
an object receives a message, it first looks up the message name to see if
it understands the message. If the message is found, it starts executing
the method that tells how to respond to the message. Just as a c function
may call other functions, a SMALLTALK method can call other methods;
this is accomplished by sending messages. To send a message to the
same object that just received the current message, the keyword self is
used. This is similar to the this keyword in c+ +. When a piece of code
happens to send a message to the same selector as the current method,
the program is using recursion.

The method moveDisk:to: includes a few new things. The method
accomplishes the same thing as c's cout or printf(). It does so using the
System Transcript window. This behaves like the traditional character
oriented terminal. The object that represents the transcript is held in the
global variable Transcript. The message cr is equivalent to c's newline.
The message show: takes a string as an argument, then appends it to the
transcript. It also redisplays the text in the transcript window. Finally the
printString operator converts the variable name in front of it to a string.

www.manaraa.com

Programming and Coding

The strings are concatenated to an array, and the array is output to the
string.
The SMALLTALK programming environment provides tools for find

ing, viewing, writing, and running SMALLTALK methods. The system can
tell that a particular piece of text is a method by the window in which it
is typed. With traditional programming systems, a program is loosely
linked to other programs via the operating system. In SMALLTALK how
ever every program is just a piece of the whole system, and the pieces
are linked together.

5.4. DISTRIBUTED PROGRAMMING LANGUAGES

109

Due to the many different ways of configuring distributed systems, it may
be desirable to separate programming into several phases: it could have a compo
nent programming phase and a system configuration phase. In this way, a pro
grammer can develop software for the system without worrying about the physi
cal configuration of the system on which it will run. System configuration is
handled by the underlying supporting environment rather than the application
program itself. General sequential programming languages have these two
phases mixed together in the language, so these are not suitable for a distributed
system environment. lO

In the component programming phase, each component and how it interacts
with other components are defined. Depending on the language, a component
may be a process, an object, a statement, an expression, or a clause. Each
component may communicate with another through message passing or data
sharing. Then in the system configuration phase, the underlying environment (the
operating system) assigns a configuration specification that maps the program to
specific software nodes, then determines how these software nodes are distrib
uted (mapped) among the physical nodes of the network. The programmer does
not have to be concerned with how the system is configured. The programmer
can use the same language primitives for both local and remote communication,
and he/she can be unaware of how the communication message is actually sent to
another node. This is the basis of communication transparency.

A language for distributed systems that uses this idea is Network Implemen
tation language (NIL).ll Its model of a distributed system consists of a logical
view and a physical view; the programmer sees only the logical view. The
programmer creates a NIL virtual machine, which consists of interconnected
processes. This virtual machine is actually implemented on the physical view as
one or more physical processors. Messages are used to communicate between the

www.manaraa.com

110 Chapter 5

processors. The NIL compiler maps the programmer's logical view to the net
work's actual physical view. Therefore the programmer can concentrate on de
signing a correct working algorithm while the compiler adjusts the algorithm's
performance to the actual physical implementation of the network. This is one of
the main ideas behind many (but not all) distributed system language designs.
Many argue that the actual placement of a program on the network should be
hidden from the user. However there are applications where explicit placement of
components on processors may be better, since a compiler does not know the
intentions of the programmer's and what the program actually does.

The following sections discuss issues that should be considered for distrib
uted system language design.

5.4.1. Parallelism

Parallel execution of different components of a program to achieve faster
execution time and hence better performance of the program is one of the main
reasons for using a distributed system. With good designs a program can have
components that successfully run in parallel. If the program is developed in strict
sequential manner so that many parts rely on values from other parts, it may not
gain much in performance even if run on a distributed system. Therefore a
language for a distributed system should be designed to take advantage of paral
lel execution.

5.4.2. Communication

Depending on the amount of computation a program performs, different
types of systems may be desired. A program that performs much computation but
communicates infrequently is well suited to such a distributed system as a LAN or
a WAN. Since such a program does not communicate often between its parallel
components, the cost of communication through the network is small. However a
program that must often communicate between its parallel components may be
affected by the amount of time it takes to send messages through the network.
Communication overhead can become very expensive then. These programs
should be run on a very closely coupled distributed system, such as a multi
processor. It may be even better not to use a distributed system at all but to use a
system of multiple processors that access shared memory. As faster communica
tion rates become available through advances in technology however, boundaries
between these different distributed systems may blur.

There are many ways of sending messages between processes to control
communication costs. Messages can be sent through point-to-point message

www.manaraa.com

Programming and Coding 111

passing; directly from one processor to another, using remote procedure calls to
call procedures running on some other processor; or through one-to-many mes
sages that are broadcast through the network to several or all processors. In
addition to message passing, communication between processors can be done by
data sharing, using either distributed data structures or shared logic variables.
Which forms of communication primitives are used depends on the particular
distributed system and what applications are designed to run on it.

5.4.3. Synchronization

Synchronization between processors goes hand in hand with communication
primitives. In some programs a procedure may need information from another
procedure. If that procedure is located on another processor, then a message must
be sent requesting the information. Depending on the design of the system and
programming language, the calling procedure may have to wait until the other
procedure sends back the desired results. On other systems the procedure may be
able to continue running while it waits for its request to be answered. When a
program component must wait until another component returns the results of a
request, the system has synchronous communication. If a component can contin
ue working while it waits for its reply, the system has asynchronous communica
tion. Distributed programming languages may implement communication either
synchronously, asynchronously, or both, depending on its design goals.

Since a component may have to wait for results from several other compo
nents on different processors, there is an amount of nondeterminism present. The
order in which results are sent back is unknown to the calling procedure. There
must be some way of handling this situation. Primitives designed for this purpose
include select statements and guarded horn clauses.

5.4.4. Partial Failure/Fault Tolerance

The final issue in distributed system design is increased reliability through
partial failure and fault-tolerant systems. Partial failure is based on the fact that
since each processor operates on its own, failure in one processor should not
affect the others. If a program has several components running in parallel that are
replicated on several different processors, then when some processors fail, back
ups can continue, so that the user does not know a fault has occurred. In this way
a program can execute more reliably.

Depending on the applications being run on a distributed system, different
combinations of the preceding ideas are required. An application may be inher
ently distributed in that each processor primarily runs its own components and
communicates only through messages for specialized functions. An example of

www.manaraa.com

112 Chapter 5

this is electronic mail (E-mail) communication between workstations. In this case
a distributed system is used so that people can communicate with each other.
Another area for distributed systems is specialized services: Each service is given
several dedicated processors, which increases their reliability and performance.
The distributed system then allows these services to share printers, tapes, and
disk drives. Other applications are spread out across the system, using many
different nodes, and each component must communicate with others often to run
efficiently.

Some systems may need faster communication schemes, whereas others
may be able to tolerate a slower communication scheme. Some applications are
very important and may therefore need heavy protection against faults in the
system. Others are less important and may not need the added expense of a
serious fault detection and recovery scheme. In such cases if the system crashes,
the application is rerun once the system is fixed. In designing a programming
language for a distributed system, the applications to be run on this particular
system must be considered in the design process.

All of the preceding features could be provided by the operating system for
the distributed system or by a language designed specifically for distributed
programming. If these features are provided by the operating system, programs
being run call special library routines to execute operating system commands to
perform desired distributed system actions (Le., message passing). This approach
has the disadvantage that the sequential language used cannot take full advantage
of the distributed environment. Since the operating system does not know exactly
what the programmer wants to happen, special coding is needed for certain
situations.

Using a language designed for distributed systems has several advantages.
One advantage is the ability to move programs from one machine to another
without side effects; that is programs can be ported to different platforms more
easily. Also since the language is designed for a distributed system, the code will
be easier to read without numerous strange operating system calls. The program
ming language is at a much higher level than the operating system, and it may be
able to do much more than the operating system's message-passing capabilities
and to do it more easily.

For a given distributed system, a language designed for it should be able to
run efficiently on it and to implement common applications run on this particular
distributed system. Different applications use different models; one very basic
model involves a number of sequential processes running in parallel and commu
nicating through message passing. Such languages as csp12 (see Section 5.5)
belong to this category.

Some languages have parts inherently designed to be run in parallel; some
examples are functional languages, logic languages, and object-oriented or ob
ject-based languages. Expressions can be evaluated in any order in functional

www.manaraa.com

Programming and Coding 113

languages. Similarly logic languages have many parts that can be run in parallel.
A concurrent version of PROLOG was designed in this fashion. 13 In object-ori
ented or object-based languages, objects are active parts of a program, and
individual objects can be placed on devoted processors to be run in parallel.
Another method involves communicating through procedure calls, where some
procedure is located on another processor. Shared data can also be used for
communication between processors, and this can be done even through distrib
uted systems in our case do not have shared memory.

Before analyzing some actual programming languages for distributed sys
tems, we must discuss what methods are used to implement the preceding ideas;
that is what methods are used to implement parallelism, communication, and
partial failures.

5.4.5. Primitives for Parallelism

Depending on the language, parallelism can occur among many different
types of components: parallel processes, statements, objects, expressions, or
clauses. Each one offers advantages and disadvantages depending on the particu
lar system. Many languages support processes as their unit of parallelism. A
process acts as both a unit of concurrency and data ownership; how processes are
declared varies from language to language. In CONCURRENT C14 for example,
they are declared implicitly. A process data type is defined, then a process is
declared by declaring a variable of that data type. A process in CONCURRENT C
contains its own stack, program counter, machine registers, and its own flow of
control. Other languages however declare processes explicitly using a special
statement to create the process. In this way values may be sent to the process on
creation that can be used to set it up in special ways. In both cases every process
runs in parallel performing its designated functions. Processes may either termi
nate themselves or be terminated by some other process; termination methods
depend on the system.

Another primitive for expressing parallelism is statements, which can be put
together in groups to run in parallel. For this a keyword (such as PAR) specifies that
the following statements in the program are to be executed in parallel. Likewise a
keyword (such as SEQ) can be used to specify sequential execution of statements.
Although this is very easy, large programs cannot be handled very well with this
method.

In object-oriented and object-based programming languages each individual
object could essentially have a processor to itself. Unlike sequential languages,
which use objects, an object in a distributed language remains active once it begins
and runs as a separate process. Communication between objects occurs through
some form of message passing. Although objects lend themselves to parallel

www.manaraa.com

Jl4 Chapter 5

execution,many small objects running on separate processorsmaybecostly in terms
ofcommunication costs. In a system, such as aWAN, high communication costsmay
outweigh the advantages of executing each object in parallel.

In functional languages functions compute results based only on their input
values. Since these functions cannot affect any other function, they are well
suited to be run in parallel. However as in object parallelism, many small func
tions may cause too much communication overhead. Similarly logic program
ming languages can be executed in parallel through AND / OR parallelism. If a
goal has several clauses that can be evaluated to determine if the goal is true, they
can be executed in parallel.

There are two ways for this parallel execution to occur. Given the following
clauses15:

A:-B,C,D
A: - E,F

The two clauses for A can be executed in parallel until one of them succeeds or both
fail (OR-parallelism). Alternatively for each of the two clauses, the subgoals can be
solved in parallel until they all succeed or anyone of them fails (AND-parallelism).
However certain conflicts could arise. These situations must be checked, but doing
so may restrict the amount of parallelism that can be achieved.

For parallelism to be useful, program performance should be increased. For
this to occur there must be efficient program mapping to the physical processors.
Certain componeJl.ts of a program should not be run in parallel if communication
costs outweigh the added advantage of parallel distribution among these compo
nents. Languages may allow component mapping to be performed directly by the
programmer or made invisible to the programmer as in NIL. A few languages even
allow program components to move between processors during their lifetime.

5.4.6. Primitives for Communication and Synchronization

For parallel running components of a program to work efficiently, there
must be some way of exchanging data among parallel components. Therefore
good communication primitives are needed. The two basic types of communica
tion are message-passing and data-sharing. Since some program components
may need information from another component before it can continue, there must
be some synchronization primitives to handle this situation. Both communication
and synchronization primitives are needed to run parallel components efficiently.
Although the unit of parallelism in a distributed system can be processes, state
ments, objects, and the like, we refer to parallel-running components as processes
in the following discussions.

www.manaraa.com

Programming and Coding ll5

Message passing can be broken down into four basic groups to include
point-to-point messages, rendezvous. remote procedure call, and one-to-many
messages. A point-to-point message is sent from a sender to a receiver. Usually
the sender executes some from of send command to send a message. The receiver
then either issues an accept command to receive a message or has automatic code
that is executed when a message is waiting at its input port. An advantage of the
accept command is that the programmer can specify conditions telling the pro
cess what message to look for and receive. This can be good for security pur
poses, for example (from Ref. 15):

accept open (f) such that not_locked (f) { ... }

To specify which process to send a message to or receive a message from,
there must be a way of naming the process. This can be done directly, as in csp,
where a process name is specified, or indirectly, where the message is sent to an
intermediate location. The receiver then accesses this location to receive the
message. Another issue in point-to-point messages is whether they execute syn
chronously or asynchronously. In synchronous message passing, the sender waits
for the receiver to acknowledge that it has received the message; in asynchronous
message passing, the sender does not wait. Therefore a queuing mechanism is
needed for asynchronous message passing. A disadvantage of the synchronous
case is that the sender must always wait for the receiver to accept the message
even if no data are sent back. Rendezvous message passing (as defined in ADA or
CONCURRENT C) is similar to a procedure call: Each entry must be declared in the
same way that a procedure is declared, and the entry can be called in the same
way that a procedure is called. Then an accept statement is defined that contains
the code to execute when its entry is called.

A Remote Procedure Call (RPC) form ofmessage passing is also similar to a
regular procedure call. The sending process calls a remote procedure in the same
way as a normal procedure. The sender is blocked until output parameters of the
remote procedure are returned. The RPC is fully synchronous and can be transpar
ent to the programmer. Iftransparent, the programmer does not need to worry about
where the procedure is located; however making the procedure completely trans
parent is very difficult. Ifa fault occurs, there must be someway of telling the sender
that something is wrong. One way of doing this is through time-outs.

Sometimes a message needs to be sent to several processes; this is where
one-to-many message passing can be used. In this case the message can be
broadcast to all processes or multicast to several specific processes. Both are
unreliable, since the message cannot be guaranteed to reach all its destinations.
However sending a one-to-many message may be faster than sending several
point-to-point messages.

www.manaraa.com

116 Chapter 5

In data sharing data can be passed from one process to another if each
process can access the same variable. Since any process could access this vari
able, security precautions are needed. One method of data sharing is distributed
data structures. This requires storing the data structures in a specific space that
can be accessed by all processors. Then using special commands, data can be
sent, read, and deleted from this space. The language LINDA16 used distributed
data structures in a method called Tuple Space. One disadvantage to this ap
proach is that processes do not know which processes will read the message they
send; that is a process that reads a message does not necessarily know which
process it came from.

Another method of data sharing involves shared logical variables. Once a
logical variable is assigned a value, it cannot be changed. Processes generate a
binding on certain variables. The processes are blocked when the variables they
try to use are still unbound. The process remains blocked until a value is given to
the variable.

In addition to communication between processes, synchronization is also
needed. Since the order that processes interact cannot always be predetermined,
primitives must be set up to handle this nondeterminism. This is done through
two primitives: the select statement and guarded horn clauses. A select statement
consists of a guard (a Boolean expression), which if evaluated as true causes
certain statements to be executed. The csp language has a form of select state
ments. If several guard expressions evaluate to true, then one is chosen nondeter
ministically, and the statements are executed.

Select statements can be used to wait for specific messages from specific
processes without considering the order in which the messages arrive. They can
also be used to implement time-outs and control process terminations. However
since guards are selected nondeterministically from the true Boolean expressions,
there is no way of telling which one will be executed.

Guarded hom clauses are another form of nondeterministic control. Since
backtracking on sequential systems is too complicated to be implemented easily
in a distributed system, some other method must be used.

Rather than trying the clause for a given predicate one by one and
backtracking on failure, parallel logic languages (l) search all these
clauses in parallel and (2) do not allow any bindings made during
these parallel executions to be visible to the outside until one of the
executions is committed to do. (Ref. 15)

Guarded hom clauses are used to implement this. According to the preceding
quotation, a guard should not affect its environment unless it is selected. If any
guards abort, nothing should happen to the environment.

www.manaraa.com

Programming and Coding

5.4.7. Primitives for Partial Failure/Fault Tolerance

117

For higher reliability to be realizable, there must be mechanisms to handle
crash situations. If a processor crashes, the rest of the system should be able to
continue working on a program. Replicating a program on various processors in
case of a crash is one solution. If a system can do this, it is said to be fault
tolerant. Several primitives have been designed to program fault tolerance. One
primitive uses failure detection. The operating system detects when a processor
fails, then returns an error when a program wants to communicate with the
crashed processor. Then either the programmer can write routines to handle the
crash or the operating system can repeat requests to redo the work. The process
that was on the processor that crashed can be restarted on another processor.
Messages can then be resent to the process. If a process does not run to comple
tion, there should be no side effects.

Atomic transactions ensure that a process either commits its actions or
aborts. Data from a process cannot be relied on until the process commits the
data. If the process fails, then no other process is affected because it did not rely
on those data. A transaction on a process should be recoverable so that data
changed by a process that failed can be restored to its prefailure state.
Transparent fault tolerance can also be used. Backup processes are created

on other processors. If a process fails, its backup begins executing and continues
what the main process was working on. The backup processor checks to make
sure it does not repeat unnecessary messages. Checks are taken every so often to
update the backup processor on the state of the main processor. Checking and
logging messages to disk or tape can also be used.

In the preceding paragraphs, we discussed distributed programming lan
guages. Each has advantages and disadvantages depending on the distributed
system on which they are used. One language briefly discussed earlier is NIL,
which uses processes as its unit of parallelism. A NIL process has only local data
visible to it. Local data include input and output ports connected to the input and
output ports of other communication processes. The actual physical mapping of a
NIL program to processors cannot be seen by the programmer. Security is pro
vided by a NIL program because all data are private to a process and communica
tion occurs only through a communication channel; there is no sharing of vari
ables in any form.
There is also a mechanism for checking type state that prevents malfunc

tioning modules from affecting other modules. A message variable has three type
states: UNINITIALIZED I EMPTY I and FULL. A message is UNINI
TIALI ZED if its fields are unallocated, EMPTY if its fields are allocated but
uninitialized, and FULL if they are allocated and initialized. The compiler en
forces the type state checking rules. As a result NIL programs can contain many
small processes without requiring physical memory protection hardware.

www.manaraa.com

118 Chapter 5

Communication in a NIL program occurs by connecting input and output
ports to make a communication channel. The NIL supports synchronous commu
nication through rendezvous calls and asynchronous communication through
message sending. Guarded commands are used in the communication process,
and several output ports can be connected to a single input port. Synchronous
message passing through rendezvous calls uses call and accept statements. Own
ership of a data object is temporarily transferred from sender to receiver, since
data sharing is not allowed. Ownership is then either transferred back or perma
nently given to another process. Asynchronous message passing is done through
send and receive statements. Multiple messages to a port are received in the same
order in which they were sent. The NIL uses transparent fault tolerance to handle
partial failures in the system. This is done through optimistic recovery tech
niques. The NIL compilers have been implemented for a uniprocessor as well as a
distributed system. For more about NIL, see Ref. 11.

Another programming language used in distributed systems is CONCURRENT
c, in which C is extended for distributed programming through a process data
type and related operations. CONCURRENT C also uses the process as its unit of
parallelism. Processes are an instantiation of the process data type; they are
declared using the create statement. Unlike NIL it is possible to assign a process
to a specific processor. Process declaration in CONCURRENT C has process specifi
cation and a process body. Process specification is the part that other processes
see and communicate with. Information in the process body is hidden and acces
sible to that process only. Communication in CONCURRENT C occurs through the
rendezvous mechanism, so communication takes place via transaction calls.
Communication is synchronous, although asynchronous transactions are pos
sible. Nondeterminism is possible through a select statement. CONCURRENT C
itself is not fault tolerant, although a fault tolerant version was designed using
replication of processes. A CONCURRENT C program can be implemented as one
or more UNIX processes, and it has been implemented on several systems. A
distributed version of C+ + is also being designed.

Another distributed programming language is the Synchronizing Resources
language (SR),17 An SR program is made up of resources which are dynamically
created modules that run on a single or multiple processors. Several processes
can be included in a single resource. Since distributed programs must change
dynamically in size to accommodate different hardware configurations, many
different primitives are provided in SR. Concepts used in SR are adapted from
sequential programming for the distributed programming environment but use
similar interfaces. Resources interact through operations that are called by using
a send for asynchronous communication or a call for synchronous communica
tion, which is similar to NIL'S implementation. Since these primitives can be
combined in different ways, many forms of communication are possible, includ-

www.manaraa.com

Programming and Coding 119

ing remote procedure call, rendezvous, message passing, and semaphores, which
uses a select statement with a guard similar to csp. Fault tolerance is handled by
asking the run-time system to keep track of a certain processor and to execute a
programmer's code if it fails. The SR is implemented on UNIX and Sun worksta
tions.

As a final example of a distributed programming language, we take a look at
EMERALD,18 an object-based programming language. All entities in EMERALD are
passive or active objects. Unlike the other languages previously described, the
object is the unit of parallelism in EMERALD, and an object does not need to stay
on the same processor throughout its life: It can migrate from one processor to
another. Since objects may be small, many objects can run in parallel. Basically
an object in EMERALD has four parts: Its name uniquely identifies it; its represen
tation contains the object's data; its operations are called to communicate to the
object; and its process can run in parallel with called operators. Although an
object can move from processor to processor throughout its life, it is in only one
location at any instance of time. An object's location can be controlled by the
compiler to create efficient program execution. The method used to invoke an
object is independent of the object's location; therefore programmers need not
worry where an object is located. EMERALD'S implementations should be de
signed efficiently to find objects and update their locations so that messages can
be given to them in a low-cost, efficient manner. EMERALD is implemented on
distributed Sun workstations connected through an Ethernet. Other distributed
object-oriented programming languages include CONCURRENT SMALLTALK,19
ABD/l,20 and COOL.21 A comparison of such languages is found in Ref. 22.

5.5. COMMUNICATING SEQUENTIAL PROCESSES
AND OCCAM

As discussed in Section 5.3, communicating sequential processes (csp) is a
programming language designed for distributed environments: A csp process
with name 'IT has the following general form:

'IT: ['ITl II 'IT2 II . . . II 'ITn]

where each 'ITi, 1 =::; i =::; n, is a sequential process executing a sequence of
commands, and all 'ITS are executed concurrently. Processes communicate and
synchronize among themselves with input and output commands. An input com
mand, presented in the form

a?var

www.manaraa.com

120 Chapter 5

inputs a value from the process with name a, then assigns the value to the
variable var. On the other hand, an output command, presented in the form

a!exp

outputs the value of the expression exp to the process with the name a. An output
command a!exp issued by a process ~ is evaluated only if a matching input
command ~?var is issued by a; otherwise it is delayed until such a matching
command is issued.

In addition to communication commands, a command can be an assignment
command, presented in the form

variable := expression

Or a command can be a guarded command, which in tum can be an alternative or
a repetitive command. The syntax of an alternative command is

[Gl -> CLl 0 G2 -> CL2 0 ... 0 Gn -> CLn]

This command arbitrarily evaluates any eLi whose guard condition Gi is true. If
none of the Gis is true, the control moves to the exit point of the command.
A repetitive command takes the form

* [Gl -> CLl 0 G2 -> CL2 0 ... 0 Gn -> CLn]

This is like an alternative command except the command is evaluated repetitively
until none of the Gis is true.

A command can also be a command list, presented as a list of declarations
and commands separated by semicolons, where the scope of a new variable
introduced by a declaration ranges from its declaration to the end of the com
mand list.

A command can be a parallel command, such as

where each pi, 1 ::; i ::; n is a process.

Example 5.5. (Ref. 12) The following csp program solves the dining
philosophers problem:

Five philosophers spend their lives thinking and eating. The philoso
phers share a common dining room where there is a circular table
surrounded by five chairs, each belonging to one philosopher. In the

www.manaraa.com

Programming and Coding

center of the table there is a large bowl of spaghetti, and the table is laid
with five forks. On feeling hungry, a philosopher enters the dining room,
sits in his own chair, and picks up the fork on the left of his place.
Unfortunately, the spaghetti is so tangled that he needs to pick up and
use the fork on his right as well. When he has finished, he puts down
both forks, and leaves the room. The room should keep a count of the
number of philosophers in it. (Ref. 12)

Note that deadlocks can occur in the following program; these may be
avoided by, for instance, not allowing more than four philosophers in
the room:

PHIL = * [... during ith lifetime ... ->
THINK;
room!enter() ;
fork(i) !pickup(); fork((i+l) mod 5) !pick-

up() ;

/2/

EAT;
fork(i) !putdown() fork((i+l)mod

down ();
room! exit () ;

5) !put-

]

FORK * [phil (i) !pickup () -> phil (i) ?put-
down (); 0
phil((i-l) mod5)?pickup() ->phil((i-l) mod

5) ?putdown () ;
]

ROOM = occupancy: integer; occupancy: = 0;
*[(i:O .. 4)phil(i)?enter() -> occupancy:=

occupancy + 1;
o (i:O .. 4)phil(i)?exit() -> occupancy

occupancy - 1;
]

[room: :ROOMllfork(i:O .. 4): : FORKliphil (i:O ..
4) : : PHIL]

For applications of csp, see Ref. 23. Although cSP is well-known,
little effort has been made to make it a real programming language.
Nevertheless the programming language OCCAM and its successors,24
which have been realized mainly on transputers, was largely based on
concepts proposed by csp. Example 5.6 illustrates the syntax and se
mantics of OCCAM.

www.manaraa.com

122 Chapter 5

Figure 5.1. A parallel search tree. Reprinted with pennission from Ref. 24. © 1988. Addison
Wesley.

Example. 5.6. (Ref. 24) Consider a database consisting of four inte
gers. To search for an item in the database in parallel, we can organize a
parallel search tree consisting of seven processes, as shown in Figure
5.1, where each leaf process stores one of the four integers and the other
three processes serve as branch processes. To perform a parallel search,
the key given is sent to the root branch process; in tum the key is
duplicated, then passed to the two children branch processes of the root
process in parallel. In tum each key is duplicated, then passed to each
leaf process in parallel. Each leaf process compares the integer stored in
itself with the key passed, then returns an answer (true or false) to its
parent. Each of the two branch processes in the middle, on receiving
replies from both children, performs a logical OR of the replies, then
returns the result to the root process. The root process performs a logical
OR of the two replies sent from its children, then returns the result as the
final answer.

The following OCCAM procedure realizes a branch process:

PROC branch (CHAN OF INT req, Lreq, Rreq, CHAN of BOOL
ans, Lans, Rans)

WHILE TRUE
INT key:

BOOL al, ari
SEQ

req ? key

www.manaraa.com

Programming and Coding

PAR

Lreq key

Rreq key

PAR

Lans ? al

Rans ? ar

ans ! al OR ar

The following OCCAM procedure realizes a leaf process:

PROC leaf (CHAN OF INT req, CHAN of BOOL ans)

INT Data, key:

SEQ
- load data

WHILE TRUE

SEQ
req? key

ans ! key = Data

Based on the preceding, the following is a complete OCCAM program:

[8] CHAN OF INT C:

[8] CHAN OF BOOL A:

PROC branch (CHAN OF INT req, Lreq, Rreq, CHAN of BOOL

ans, Lans, Rans)
- body of PROC

PROC leaf (CHAN OF INT req, CHAN of BOOL ansi
- body of PROC

PROC User. Interface (CHAN OF INT out, CHAN of BOOL
in)

- body of some appropriate user interface process

PAR
branch(C[l] ,C[2] ,C[3] ,A[l] ,A[2] ,A[3])

branch(C[2] ,C[4] ,C[S] ,A[2] ,A[4] ,A[S])

branch (C [3] ,C [6] , C [7] ,A [3] ,A [6] ,A [7])

PAR i = 4 FOR 4
leaf(C[i] ,A[i])

User. Interface (C [1] ,A[l])

A concurrent program in OCCAM is configured as a set of processes
communicating via channels. A process receives some input data (in the
form of channel? data) from one of its associated channels, then

123

www.manaraa.com

/24 Chapter 5

outputs some output data to one of its associated channels (in the form
of channel! data). The OCCAM is a block-structured language. A block
process is a specification terminated by a colon ':') followed by a
process; a process can be a primitive process (STOP, SKIP, assignment,
input or output); a composite process obtained by gluing together sev
eral simpler processes with a constructor; or a block process.

Any variable v declared in the form of CHAN OF protocol v desig
nates a channel whose behavior follows the protocol protocol specified
in the declaration. In Example 5.6 the protocol INT specifies that each
time exactly an integer is deposited on the channel and each time exact
ly an integer is retrieved from the channel when a rendezvous occurs
between two communicating processes. The keywords WHILE, SEQ
and PAR are constructors. Following the keyword SEQ, a number of
processes can be specified; these are executed in the sequence they are
specified. On the other hand, following the keyword PAR, a number of
processes can be specified; these can be executed in parallel. The mean
ing of the WHILE constructor should be obvious: If the associated
condition is true, then the following process should be executed. The
statement PAR i = 4 FOR 4 instantiates a replicator; it means that for
the variable i with the initial value 4, the following process is executed
in parallel for each increment of i (up to 4).

The actual OCCAM language is of course more complicated than Example
5.6. For example OCCAM allows the programmer to associate a priority with a
process so that when a group of processes are executed in parallel, processes with
higher priorities are executed first. In addition the programmer can allocate some
processes to a specific processor to optimize performance. Interested readers are
referred to Refs. 24 and 25 for details.

PROBLEMS

1. Write a C+ + program to simulate the behavior of a combinational
circuit that consists of a network of two-input, one-output logic gates. Your
program should interact with the user to enter network components and the initial
value associated with each input port. The program then computes the value that
should appear at each output port according to gate functionalities.

Your program should prompt the user to enter the following:

• Gate types.
• Gate names: e.g., xl, x2, yl.

www.manaraa.com

Programming and Coding 125

• Connections between gates in the fonn of gate_name.terminal_name:
It is assumed that each gate has three tenninals: inl, in2, and out. If the
user enters xl.inl = x2.out, this means input tenninal inl of Gate xl is
connected to the output tenninal out of Gate x2.

If in I or in 2 of a gate remains unconnected, it is assumed to be an input
port of the network. Similarly if out of a gate remains unconnected, it is assumed
to be an output port of the network. Once the user enters the network, create a
combinational circuit tree such that inputs applied at the input ports propagate
through the circuit and produce outputs at the output ports. Now ask the user to
enter input port values, then compute and print out values presented at output
ports.

2. For the robot/inserting-machine problem in Chapter 4, sketch a esp
program that solves the problem.

3. A e+ + does not provide constructs for processes; therefore it is not
appropriate for concurrent programming. Based on your knowledge of esp,
sketch possible extensions to e+ + so that it can be used for concurrent program
ming.

4. Implement the object-oriented solution described in Example 4.3 using
e++.

5. Implement the object-oriented solution described in Example 4.3 using
the extended e+ + language developed in Problem 5.3. Compare this program to
the program developed in Problem 5.4.

6. Implement the object-oriented solution developed in Problem 4.8 for
the ray-tracing algorithm using e+ +.

7. Implement the object-oriented solution developed in Problem 4.8 for
the ray-tracing algorithm using the extended e+ + language developed in Prob
lem 5.3. Compare this program to the program developed in Problem 5.6.

8. The SMALLTALK is not only a language but also a system. Discuss
possible approaches to make UNIx/e+ + an object-oriented system/language.

9. What is the output from the following e+ + program?

class X {
protected:

www.manaraa.com

126 Chapter 5

int a;
public:
void make_a (int i) {a = i;};
X(int) ;

}
class Y {
protected:
int b;
public:
void make_b (int i) {b = j;}
Y(int) ;

}
class Z : public X, public Y {
protected:
int c;
public:
int make_ab(void) {return a * b;};
Z(int,int) ;

}
X: :X(int i) {a = i; cout « "initializing X to" «a;}
Y: :Y(int j) {b = j; cout « "initializing Y to" «b;}
z: :Z(int i,int j): X(i) ,Y(j) {c = i*j; cout« "ini-

tializing Z to" « c;}
main(void)
{
Zr(lO,20);
cout < make_ab () ;
return 0;

}

10. Using c+ + define a base class shape and three derived classes: line,
triangle, and rectangle; all should share the same set of interface functions,
where n, e, s, w, ne, se, SW, and nw are defined as shown below for the smallest
rectangle that contains the shape:

(a) draw(): Draws the object on screen.
(b) move(int,int): Moves the object, where the first argument designates
the offset along the x-axis and the second argument designates the
offset along the y-axis.

(c) north(): Returns the point n.
(d) south(): Returns the point s.
(d) west(): Returns the point w.

www.manaraa.com

Programming and Coding 127

(e) east(): Returns the point e.
(f) neast(): Returns the point ne.
(g) seast(): Returns the point se.
(h) nwest(): Returns the point nw.
(i) swest(): Returns the point sw.

The preceeding definitions should be made so that the code makes sense.
You should also show output produced by the program.

REFERENCES

1. Agha, G. Actors: A model of concurrent computation in distributed systems (MIT Press, Cam-
bridge, MA, 1986).

2. Meyer, B. Object-Oriented Software Construction (Prentice-Hall, Englewood, N.J., 1988).
3. Wegner, P. ACM SIGPLAN Notices (June 1990).
4. Stroustrup, B. The C+ + programming language, 2d ed. (Addison Wesley, Reading, MA., 1991).
5. Goldberg, A., and Robson, D. Smalltalk-80: the language and its implementation (Addision
Wesley, Reading, MA, 1983).

6. Goldberg, A., and Deutsch, L. P. Byte 16:8, 108-115 (Aug. 1991).
7. LaLonde, W. R., and Pugh, J. R. Inside Smalltalk, vols. 1 & 2 (Prentice-Hall, Englewood, NJ,
1990).

8. Hu D. Object-oriented environment in C++ (Management Information Source, Portland, OR,
1990).

9. Kaehler, T., and Patterson, D. A Taste of Smalltalk (Norton, New York, 1986).
10. Chin, R. S., and Chanson, S. T. ACM Computing Surveys 23:1, 91-124 (Mar. 1991).
11. Strom, R. E., and Yemini, S. "NIL: an integrated language and system for distributed program
ming." Proc., SIGPLAN '83 Symposium on Programming Language Issues in Software Systems
(1983), pp. 73-82.

12. Hoare, C. A. R. ACM 21:8, 666-677 (Aug. 1978).
13. Shapiro, E., and Takeuchi, A. New Generation Computing 1:1,25-48 (1983).
14. Saloma, R., Liu, W., and Gyurcsik, R. S. "Software experience with concurrent C and LISP in a
distributed system" Proc., ACM 16th Annual Computer Science Conference (1988), pp. 329-34.

15. Bal, H. E., Steiner, J. G., and Tanenbaum, A. S. ACM Computing Surveys 21.3 (Sept. 1989) 261
322.

16. Ahuja, S., Carriero, N., and Ge1enter, D. IEEE Computer 19.8, 26-34 (Aug. 1986).
17. Schlichting, R. D., Andrews, G. R., Hutchinson, N. C., Olsson, R. A., and Peterson, L. L. Lecture

Notes in Computer Science (International Workshop, Kaiserlautern, FR.G., Sept., 1987) (G.
Goos and J. Hertmanis, eds.) (Springer-Verlag, New York, 1988),271-291.

18. Jul, E., Levy, H., Hutchinson, N., and Black, A. ACM Transactions on Computer Systems 6:1,
109-135 (Feb. 1988).

19. Yokote, Y., and Tokoro, M. "Experience and evolution of concurrent Smalltalk." Proc.,
OOPSLA (New York, 1987), pp. 406-15.

20. Yonezawa, A., and Tokoro, M. In Object-oriented concurrent programming (Yonezawa and
Tokoro, eds.) (MIT Press, Cambridge, MA, 1987), pp. 55-84.

21. Chandra, R., Gupta, A., and Hennessy, 1. "COOL: a language for parallel programming." Proc.,
Second Workshop on Programming Languages and Compilers for Parallel Computing, IEEE
Computer Press (1989).

www.manaraa.com

128 Chapter 5

22. Wyatt, B. B., Kavi, K., and Hufnagel, S. IEEE Software 9:6, 56-66 (Nov. 1992).
23. Hull, M. E. c., and McKeag, R. M. ACM Transactions on Programming Languages and Systems
6.2, 175-191 (Apr. 1984).

24. Bums, A. Programming in Occam 2 (Addision Wesley, Reading, MA, 1988).
25. Wexler, J. Concurrent programming in OCCAM 2 (Ellis Horwood, New York, 1989).

www.manaraa.com

6

Programming Tools

Programming can be made easier if aided by certain tools, ranging from interac
tive program development to software libraries. Reusable library modules have
proved to be useful in many aspects of programming, such as graphic user
interface and network programming. Such libraries usually provide a much
simpler (abstract) view of some tedious tasks through high-level subroutines.
Chapter 6 describes the basic ideas behind some programming tools available for
Windows I programming (Section 6.1), X-Window programming (Section 6.2),
and UNIX network programming (Section 6.3). A simple project illustrates ob
ject-oriented Window programming with the library functions available in Object
Windows.2 The same project also summarizes features provided in an interactive
programming environment IDE that supports TURBO C+ + programming. The
choices made were arbitrary; our intent is to show how reusable libraries facili
tate programming and to illustrate some desired features of an IDE.

6.1. OBJECT-ORIENTED PROGRAMMING FOR WINDOWS

The three major aspects of object-oriented programming (i.e., encapsula
tion, inheritance, and polymorphism) as implemented in c+ + makes it partic
ularly suitable for Windows programming. A Windows system contains a set of
objects. For example the main window is considered an object; similarly the help
menu that pops up is considered an object. Each object has data members (such
as the box itself, the border, the caption, etc.) and member functions, such as
close, minimize, and maximize). These objects need a way of communicating
with each other. In other words when the user selects the menu bar for help, the
menu bar help window should open. A message-sending/processing scheme is
needed. Once developed this makes any application self-sustaining. For example
suppose we want to define an item on a list. The list is an object with data and
member functions. We can define a function called add that is executed if
Menuladd is selected. Menuladd has a message, which we can call add_message.
So we can execute add if we receive add_message. This is a trivial example, but
it shows the effectiveness of object-oriented programming for Windows applica
tions.

129

www.manaraa.com

130

6.1.1. Simple Project

Chapter 6

This sample program entails building two functions: Choices and Forms.
Choices opens a menu with items that are passed as parameters to it. The user
selects an item from the menu that returns the index of the item selected. The
index refers to the place of the selected item on the list. Forms takes as parame
ters an array with a list of items; each item has a label (i.e., name), a type, a
length, and a value. The function opens a form window with an edit window for
each item. The user is allowed to go to any field to change the value of the field or
to select OK to close the window. The user can also select CANCEL, in which
case the function returns zero. If OK is selected, a type check is performed to
ensure that the new value (if any) for each item is consistent with the type. If it is,
the window closes and the function and returns 1. Otherwise an error message
appears, and the user cannot exit unless CANCEL is selected (in this case the
function returns 0).

The program is divided into six parts, each with a relevant functional synop
sis. There are three items in the main window menu bar: Store, Display, and
Help. There are three subitems under Store: Choices, Forms, and Exit; there are
two subitems under Display: Choices and Forms; there is only one item under
Help: Help. The actions associated with these items follow:

• StorelChoices: Store the array to be passed to the Choices function.

• StorelForms: Store the array to be passed to the Forms function.

• StorelExit: Exit from the program.

• DisplaylChoices: Execute the Choices function.

• DisplaylForms: Execute the Forms function.

• HelplHelp: Display the Help menu.

6.1.1.1. StorelChoices

This item accepts inputs from the user, then stores the inputs in the array
Items_Choices. When selected a dialog box appears on the screen asking the
user to enter command line arguments for the Choices function. Elements of the
array are entered in the form of:

string string ... string

A string is defined as a letter of the alphabet followed by any combination of
alphanumeric characters. Once the command line arguments are entered and the

www.manaraa.com

Programming Tools 131

user selects OK, a check is made to see if the line entered is syntactically correct.
If it is, the message is sent that the input is vaild and stored; otherwise an error
message is sent. An example of a correct command is

aaa bbb cde ff12 gg

The array Items_Choices stores the following:

Items_Choices [0] <= aaa
Items_Choices [1] <= bbb
Items_Choices [2] <= cde
Items_Choices [3] <= ff12
Items_Choices [4] <= gg

6.1.1.2. StorelForms

This item accepts inputs from the user, then stores these in the array Items
_Forms. When selected a dialog box appears on the screen asking the user to
enter command line arguments for the Forms function. Each element of the array
(called a field) is entered in the form of

(name)(type)(length)(old_value)

where (name) is defined as a letter of the alphabet followed by any combination
of alphanumeric characters; (type) is either int, float, or string; (length) is an
integer designating the length of the associated field; and (old_ value) is any-old
value for the field. If the field does not have any-old value, an asterisk is used.
Once command line arguments are entered and the user selects OK, a check is
made to see if the line entered is syntactically correct and the values entered are
consistent with their associated types. If they are, a message is sent that the input
is vaild and stored; otherwise an error message is sent. An example of a correct
command is

a int 5 5 b string 10 mygod ccc float 10 5.5

The array Items_Choices stores the following:

Items_Forms [0] [0] <= a
Items_Forms [0] [1] <= int
Items_Forms [0] [2] <= 5
Items_Forms [0] [3] <= 5
Items_Forms [1] [0] <= b

www.manaraa.com

/32 Chapter 6

Items_Forms [1] [1] <= string
Items_Forms [1] [2] <= 10
Items_Forms [1] [3] <= mygod
Items_Forms [2] [0] <= ccc
Items_Forms [2] [1] <= float
Items_Forms [2] [2] <= 10
Items_Forms [2] [3] <= 5.5

6.1.1.3. StorelExit

This item opens a window to confirm the user's action. If the action is
confirmed, the application is terminated; otherwise the program continues.

6.1.1.4. DisplaylChoices

When selected, this item executes the Choices function, which is an integer
type. If the array Items_Choices does not contain a element, an error message
appears. Otherwise a menu of array elements and two buttons: INDEX and
CANCEL are created in a window. The user can select any item on the list in two
ways-by double clicking on an item in the menu, which closes the window; the
function then returns the index of the selected item. The second way is by single
clicking on the item, then selecting INDEX. If the user selects CANCEL, the
window closes and 0 is returned as the function value.

6.1.1.5. DisplaYIForms

When selected this item executes theForms function, which is an integer type.
If the array Items _Forms does not contain a element, an error message appears.
Otherwise a menu of array elements and two buttons: INDEX and CANCEL are
created in a window. Each item is display as a field with a label and a box whose
length is defined and contains the old value of the field (empty ifnone). The user can
move to any field to enter its new value; the user then selects OK. The new value of
the ith field (ifany) is stored inItems_Forms[i][4].lfno new value is entered for the
ith field and it did not have an old value, an asterisk is stored in Items _Forms[i][4].
If every thing is fine after type checking, the function returns 1. If there is a type
mismatch or CANCEL is selected, an error message appears (in the case of a type
mismatch), and the function returns O. Furthermore if CANCEL is selected, all
changes entered are invalidated. Again the user can select any item on the list in two
ways-by double click on amenu item, which closes the window; the function then
returns the index of the selected item. The second way is by a single clicking on an
item, then selecting INDEX. If the user selects CANCEL, the window closes and 0
is returned as the function value.

www.manaraa.com

Programming Tools

6.1.1.6. HelplHelp

J33

This item displays a list box, a display window, and two buttons: HELP and
CANCEL. The user can access help for an item on the list by doubly clicking on
the item. The display window displays help text about the item selected. The
same effect can be achieved by clicking on the desired item, then selecting
HELP. Selecting CANCEL closes the Help window. Unlike Choices and Forms
windows, Help windows can be active while the user is executing other com
mands. Help windows are referred to as modeless; other windows are referred to
as modal.

6.1.2. Object Windows

ObjectWindows is an object-oriented library that uses the advantages of
object-oriented programming to make programming Windows applications, es
pecially the user interface, easier.2 Similar facilities are provided by Microsoft's
Visual C+ + in its Foundation Class library. ObjectWindows defines all major
window elements with well-stated behaviors, attributes, and data. It provides
three major features: encapsulation of window information, abstraction of many
window functions, and an automatic message response scheme.

In Object Windows encapsulation of window information is provided for
major window elements. These elements are usually standard in any code for
programming Windows. Be defining these the application programmer can spend
more time figuring out the logistics of the application rather than coding stan
dardized and repetitive classes. On the other hand, with a member function that
abstracts a called window's function, programming becomes a lot easier. There
are approximately 600 window functions, most of which (but not all) are ab
stracted. ObjectWindows also provides automatic message response. Windows
require its applications to respond to Windows messages that it receives. With
traditional Windows programming in c, a switch statement responds to all pos
sible messages that can be sent to an object. With ObjectWindows however,
Windows messages are handled by object member function calls. A member
function can be defined for each message to be handled. Once a message is
received, the appropriate function is called. This makes the code shorter than in
traditional programming.

As a simple example, consider an application that requires a function creat
ing a window, then hangs until some input is received from the window. Object
Windows has a predefined class called TDialog designed specially for this pur
pose. In a similar way, basic window classes and objects that appear in them
(such as list boxes, edit windows, static text, etc.) are provided in ObjectWin
dows.

www.manaraa.com

134 Chapter 6

The following sections summarize some important facilities provided by
ObjectWindows to implement the simple project.

6.1.2.1. Modal and Modeless Windows

There is an important distinction between modal and modeless windows
when programming with ObjectWindows. A modal window hangs the parent
window until some user input is received; on receiving the input, the modal
window returns control to the parent window. A modeless window exists along
with the parent window, so the user can switch between them at will. For the
simple project previously discussed, the Choices window and the Forms window
are implemented as modal windows, but the Help window is implemented as a
modeless window. Note that when the user exits the application, a modeless
window closes automatically along with the main window. The code for creating
a modal window is much different from that for creating a modeless window. In
ObjectWindows a typical type of modal windows is dialog box.

6.1.2.2. Applications Main Program

All ObjectWindows applications contain a main program that controls the
application. For almost all applications using ObjectWindows, the main program
contains the following lines of code:

Int PASCAL WinMain (handle hInstance, HANDLE hPrev
Instance, LPSTR lpCmdLine, int nCmdShow)
{ TAppExample AppExample ("Application Example",
hInstance,hPrevInstance,lpCmdLine,nCmdShow)j
AppExample.Run()j
return AppExample. Status j

}

The first line of code calls the constructor of the class TAppExample, a
subclass of the ObjectWindows class TApplication, to construct an application
object, called AppExample in the preceding. The second statement calls a mem
ber function Run of the object AppExample. Internally the function calls another
function AppExample./nitApplication to initialize the first instance of the object
AppExample. AppExample.Run() then calls the function InitMainWindow, which
creates and initializes the main window of the application. This function is
usually redefined for each application by the user. Finally AppExample.Run()
calls the function MainWindow.MessageLoop() to process messages to and from
the application. The last statement returns the final state of the application: 0 to

www.manaraa.com

Programming Tools 135

successfully close the application. Any nonzero value represents an error condi
tion. The class TAppExample can be defined as follows:

class TAppExample: public TApplication
{
TAppExample(LPSTR AName, Handle hInstance, HAN

DLE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) :
TApplication (AName, hInstance, hPrevInstance,
lpCmdLine, nCmdShow){};
virtual void Ini tMainWindow () ;

}

The member function InitMainWindow() can be defined as follows:

void TAppExample: : Ini tMainWindow ()
{
MainWindow = new TMainWindow(NULL, "MainWindow of
Application") ;
}

During initialization of the application, InitMainWindow is executed and
creates the desired main window for the application.

6.1.2.3. Resource File

A resource refers to any Windows interface element, such as a regular
window, an edit window, a dialog box, or a button, etc. Each application usually
has a resource file, which defines the main window menu bar. Additional re
sources, such as dialog boxes, can be included as well. The resource file for the
sample program (see Section 6.1.3) resembles the following:

COMMANDS MENU
BEGIN
POPUP "&Store"
BEGIN
MENUITEM "&Choices" , CM_CHOICES
MENUITEM "&Forms", CM_FORMS
MENUITEM "&Escape", CM_ESCAPE
MENUITEM "&Exit", CM_EXIT

END
POPUP "&Display"
BEGIN

www.manaraa.com

136 Chapter 6

MENUITEM "&Choices", CM_DISCHOICES
MENUITEM II &FORMS II , CM_DISFORMS

MENUITEM "&Escape", CM_DISESCAPE

END

POPUP "&Help"

BEGIN

MENUITEM "&Help", CM_HELP

END

END

FORM3 DIALOG LOADONCALL MOVEABLE DISCARDABLE 10,

10, 100, 100

STYLE ws _CAPTIONlws _ SYSMENUIDS _MODALFRAMElws

_POPUP

BEGIN

END

FORM2 DIALOG LOADONCALL, MOVEABLE DISCARDABLE 10,

10, 100, 100

STYLE ws _CAPTIONlws _ SYSMENUIDS _MODALFRAMElws

_POPUP

BEGIN

END

FORM1 DIALOG LOADONCALL MOVEABLE DISCARDABLE 100,

100, 300, 200

STYLE WS _ CAPTIONlws _ SYSMENUIDS _MODALFRAMElws
_POPUP

BEGIN

END

The resource file defines the main window menu bar and the two dialog
boxes used for the Choices and Forms functions. Each resource in the resource
file has a unique identifier, somewhat like a handle. In the main program, a
programmer can access a resource of the resource file by using the associated
resource identifier. For instance as seen from the source (see Section 6.1.3), the
identifier COMMANDS is used as the sole argument of the statement

AssignMenu(ICOMMANDS") ;

in the constructor of the class TMyWindow. With this the resource identified by
COMMANDS is bound to be the menu of the application. Similarly the resource
FORM1 is bound to be the dialog box in the following call:

GetModule () ->ExecDialog (new TForrnWindow (this,

IFORM1",iterns,count) ;

www.manaraa.com

Programming Tools 137

The resource file is compiled separately, and it is bound to the main program
at link time. ObjectWindows provides an interactive user interface to define
resources in a resource file, although it can be written as a file by the user.
ObjectWindows is basically a library of some base classes ~hat can be reused by
application programs. The following list summarizes some base classes used in
the sample program in Section 6.1.3.

TApplication: Defines the basic structure and behavior of all ObjectWin
dows applications. All ObjectWindows applications must contain a derived
class of TApplication.

TWindowsObject: Defines basic structure and behavior of all ObjectWin
dows interface objects, such as windows and dialog boxes. Member func
tions of this class create interface objects, handle messages, and destroy
interface objects.

TWindow: Is a subclass of the class TWindowsObject, and it provides funda
mental window features. A TWindow object can be used as the main win
dow for an application or as a pop-up window.

TDialog: Is the base class for modal and modeless dialog boxes. For each
dialog box, there must exist a resource definition in the resource file describ
ing its controls, which include buttons, list boxes, edit windows, etc. Mem
ber functions of this class handle message responses between a dialog box
and its controls.

TListBox: Defines the structure and behavior of list boxes (or choice boxes).

TEdit: Defines the structure and behavior of an edit window, which includes
a text editor. There are two basic types of edit control: single line and
multiline.

TButton: Defines the structure and behavior of a push button. There are two
types of push buttons: default and regular. A default button performs the
default action of a window; i.e., if the keyboard is enabled, a return should
be synonymous to selecting the default button. A regular button has no
default action.

TStatic: Defines graphics or text that can be displayed in a window. Static
controls are not selected or modified by the user. In our example it is ideal
for the label of a field of a Forms window. There is no need to access a static
control and therefore no need to have a unique ID for a static object.

www.manaraa.com

138

6.1.3. Sample Program

Chapter 6

Figure 6.1 (see pages 164-180) shows a sample program that creates an
interactive user interface in Windows. The program basically creates three
classes: one for the main window (TMyWindow), one for Choices (TFormWin
dow), and one for Forms (TForm2Window).

6.1.3.1. TFormWindow

This is a derived class of the ObjectWindows class TDialog. It is defined in
the resource file with the resource ID Forml. There are two types of dialog
boxes: modal and modeless. The program declares the dialog box of a TForm
Window to be modal so that the calling function waits for user input. TFormWin
dow's constructor creates an instance of TListBox called ListBox. The constructor
of the class TListBox takes as parameters a pointer (which is this), a unique ID
(which is FORM1), the x-coordinate, the y-coordinate, the width, and the height.
Position is stated relative to the class TFormWindow. To handle list box mes
sages, a member function HandleListBoxMsg is defined. It is invoked whenever a
list box is selected, and its execution is automatic due to ObjectWindows auto
matic message-item processing facility. The following code shows how a mem
ber function is declared for this purpose:

virtual void HandleListBoxMsg (RTMEssage Msg)
= [ID_FIRST + ID_LISTBOX] ;

Other member functions of this class include OK and HandleButton2Msg.
OK handles the OK button when selected, and HandleButton2Msg handles the
CANCEL button when selected. The TDialog class has its own OK function, and
this class overloads it. HandleButton2Msg simply closes the window and sets the
global Choices_return to O. The Setup Window function overloads the function
from its parent class and puts all items in the list box from the array and sizes the
window using the MoveWindow function. Note that an array is passed from
outside of a class to the class through its constructor.

6.1.3.2. TForm2Window

This class is also derived from TDialog and it is modal. In the constructor of
this class, width, height, the x-coordinate and the y-coordinate are calculated
using information from the array and an integer count passed to the constructor.
A label and an edit window are placed in a TForm2Window by creating a Tstatic
object and a Tedit object, respectively. Each edit window must have a unique
identifier, so an integer BASE_EDIT is defined to represent the identifier of the
first edit box. Once the first edit window is placed, the integer is incremented for
every edit window placed. On the other hand, a TStatic object does not need an

www.manaraa.com

Programming Tools 139

identifier, since we never have to select or modify static text. The constructor of
Tedit takes as parameters a pointer to the parent (which is this), the ID (of the
object), the default text, the x-coordinate, the y-coordinate (with respect to the
TForm2Window), the length, height, maximal number of characters allowed in
the window, and a Boolean value (when FALSE it designates a single-line edit
window). The constructor of TStatic takes as parameters a pointer to the parent
(which is this), the ID (which is don't care, - I), the text, the x-coordinate, the
y-coordinate (with respect to the TForm2Window), length, height, and maximal
number of characters allowed in the window. In this class a function OK is needed
to overload the Tdialog::OK function to do type checking. If no type checking
error occurs, the function in tum calls TDialog::OK, which in tum closes the
window. Otherwise it closes the window and does not allow TDialog::OK to
return IDOK to the calling function.

6. I .3.3. TMyWindow

This class is derived from the class TWindow of ObjectWindows. The
WinMain function initializes the application to point to a TMyWindow object.
The constructor of this class assigns the resource COMMANDS to this window and
does some additional initializations. The function Choices_store is executed
whenever the user selects StorelChoices. The function is declared as follows:

virtual void Choices_store (RTMessage Msg)
= [CM_FIRST + CM_CHOICES] ;

where CM_CHOICES is the ID of the menu item Choices under the group item
Store.

The following function opens up a standard input dialog box:

GetApplication()->ExecDialog(new TInputDialog
(this, RCommand Line: R, RCommand LineR, InputText,
sizeofInputText));

This function opens up a single-line dialog box and stores whatever is entered in
InputText. If there are no syntactic errors, the Boolean variable Choices_filled is
made true; otherwise it remains false. The function Forms _store works in a
similar way. The function Choices_display is the action corresponding to the
menu item DisplaYIChoices. It creates a TFormWindow object using the Exec
Dialog function with the identifier FORM1. The program hangs until input is
received from the user. If the returned value of the ExecDialog function is IDOK
(which is handled by Tdialog::OK), the function copies from the global transfer
integer Choice_return, then returns this value; otherwise it returns O. The func
tion Display_Forms works similarly except that an array is copied. Finally the

www.manaraa.com

140 Chapter 6

function CanClose is overloaded from the class TWindow. It returns true if the
user selects YES in the message box asking to confirm the exit request. This
function is called before the TMyWindow is closed. If the return value is true, the
window is closed and the reverse, otherwise.

6.1.3.4. TMyApp

This class is derived from the ObjectWindows class TApplication. It has a
member function called InitMainWindow that sets the data memberMainWindow
to point to a TMyWindow object.

6.2. IDE-AN INTERACTIVE PROGRAMMING
ENVIRONMENT

The TURBO C+ + IDE provides an editor, a compiler, and a debugger. The
editor lets the user create or modify a program. The compiler converts a program
into instructions. The debugger helps the programmer identify parts of a program
that do not work correctly. The integrated environment consists of three parts:

• Windows: Display information on the screen.

• Pull-down Menus: Provide commands for manipulating a program.

• Status line: Displays options available to the programmer.

The following summarizes the menu items that can be chosen in IDE:

6.2.1. File Menu

• Open: Opens an existing file.

• New: Opens a new edit window with the default name of NONAMExx.C,
where xx is a number from 00-99.

• Save: Saves the file in the active edit window in the current directory.

• Save As ... : Saves (copies) the current file under a different filename, in
a different directory, or on a different drive.

• Save All: Saves the contents of all modified files.

• Change Dir ... : Lets the programmer choose a different directory or a
different drive.

• Print: Prints the entire file in the active edit window to the printer.

www.manaraa.com

Programming Tools 141

• Get Info ... : Displays a box containing infonnation about the current
file.

• DOS Shell: Takes the programmer to DOS. To return to IDE, the program
mer simply types exit, then selects Return.

• Quit: Tenninates IDE.

6.2.2. Edit Menu

The Edit menu contains the following commands for editing files:

• Restore Line: Restores the last line changed or deleted.

• Cut: Cuts selected text. Text can be selected by clicking the left mouse
button at the beginning of the text, dragging the mouse until the desired
text is highlighted, then releasing the mouse button. A selected text can be
pasted anywhere using the paste option.

• Copy: Works the same way as Cut except that Copy does not delete text
from its original position. However the selected text can be pasted any
where in the file.

• Paste: Puts previously selected text into the window (at the position of the
cursor).

• Copy Example: Copies preselected text blocks f~om the Help window to
the clipboard.

• Clear: Works like Cut except it does not paste selected text (i.e., it fully
deletes selected text).

6.2.3. Compile Menu

The Compile menu contains the following commands for compiling pro
grams:

• Compile to OB1: Creates an .OBJ object file.

• Make EXE File: Creates an executable .EXE file, using the name of the
current file or the name of the project file specified with the Project
menu's Open command. In the process of making an executable .EXE file,
TURBO C+ + also creates an .OBJ file.

• Link EXE File: Takes the current .OBJ and .LIB files and links them to
produce an executable file.

www.manaraa.com

142 Chapter 6

• Build All: Rebuilds all the files in a project regardless of their date.

• Remove Messages: Clears any messages in the Message window.

6.2.4. Debug Menu

The Debug menu lets the programmer to debug a Turbo C++ program:

• Inspect: Allows the programmer to examine and modify the contents of a
data element, such as character, pointer, array, function, class or structure.

• Evaluate/Modify: Allows the programmer to examine and modify the
value of a variable.

• Call stack: Lists the sequence of functions called by a program.

• Watches: Displays a pop-up menu of four watch point commands:

-Add Watch: Lets the programmer examine the content of a variable
while running a program with the TURBO C+ + integrated debugger.

-Delete Watch: Removes displayed watch points created with the Add
Watch command.

-Edit Watch: Allows the programmer to edit a watch point created with
the Add Watch command.

-Remove All Watches: Removes all watch points created by the Add
Watch command.

• Toggle Breakpoint: Allows the programmer to set a breakpoint or remove
an existing one. A breakpoint is a line in a program where the program
stops running until the programmer gives the command to continue
(through Step or Run).

6.2.5. Run Menu

The Run menu provides the following options:

• Trace Into: It runs the program line by line. When the debugger reaches a
function call, the debugger displays the lines of the called function. Upon
exiting the function, the debugger again goes back to the main program.

• Step Over: This command runs the program line by line just like the Trace
into command. The difference is that when the debugger reaches a func
tion call, it does not display the lines of the called function.

• Breakpoints: It display a list of all breakpoints, their line numbers, and

www.manaraa.com

Programming Tools 143

their conditions. This command lets the programmer quickly view and
delete any breakpoints set in a program.

6.2.6. Search Menu

The Search menu helps in searching for specific text, function declaration,
and errors in a program.

• Find: Displays a dialog box that provides several search criteria:

-Case Sensitive: Differentiates between uppercase and lowercase letters.
-Whole Words only: Searches for strings separated by punctuations or
spaces on both sides.

-Regular Expression: Recognizes GREP-like wild cards in a search
string.

-Origin: Determines the starting point for search-from the cursor posi
tion or the beginning/end of a file.

-Direction: Determines the direction of the search from the origin se
lected.

-Scope: Determines whether to search selected text in a file or the entire
directory.

• Replace: Displays a dialog box that lets the programmer search and re
place text within a file. The replace dialog box contains the same options
as the Find Dialog box, with an additional command line to write/search
for the text that replaces the original text.

• Search Again: Repeats the last Find or Replace command with the same
settings.

• Go to Line Number: Prompts the programmer to enter the line number to
view and displays it.

• Previous Error: Displays the line in a program that contains the previous
error or warning message. This command works only if the Message
window contains messages.

• Next Error: Displays the line in a program that contains the next error or
warning message. This command works only if the Message window
contains messages.

• Locate Function: Lets the programmer find the name of a function. This
command is available while only using the integrated TURBO c+ + debug
ger.

www.manaraa.com

144

6.2.7. Option Menu

Chapter 6

The option menu contains commands for changing the settings of the TURBO
c+ + integrated development environment.

• Full Menu Option: Determines the complete TURBO C+ + menus or dis
plays only a partial set.

• Compiler: Consists of suboptions about how TURBO C+ + creates opti-
mized code from a program.

• Transfer: Allows programs to be added or deleted from the System menu.

• Make: Lets the user specify conditions that stop project making.

• Linker: Lets the programmer define how TURBO C+ + links together .OBJ
files in a project.

• Debugger: Lets the user define how the integrated debugger works.

• Directories: Specifies in which directories TURBO C+ + can find include
and library files; also lets the user specify in which directory to save
program files.

• Environment: Displays a pop-up menu to specify the appearance of TURBO
c+ + integrated environment, how the integrated debugger behaves, when
TURBO C+ + automatically saves files, how the editor works, and how a
mouse works with TURBO C+ +.

• Save: Saves any option set so TURBO C+ + automatically uses them the
next time TURBO C+ + is run.

6.2.8. Project Menu

The Project menu contains six commands for managing projects. A project
is simply a collection of separate files that work together to realize a single
program.

• Open Project: Creates a new project or loads an existing one; also creates
some files that contain information needed to create an executable .EXE
program file.

• Close Project: Closes the current project.

• Add Item: Allows a file to be added to a project.

• Delete Item: Allows a file to be deleted from a project.

www.manaraa.com

Programming Tools 145

• Local Options: Display an Override Options dialog box that defines op
tions for a project. The available options are

-Overlay this module: Makes selected project items as overlay files.
-Exclude Debug information: Makes smaller .EXE files at the expense
of removing debug information. (Without debugging information, the
user cannot examine how a file works with the TURBO C+ + integrated
debugger.)

-Exclude From Link: Prevents a file from being linked to create an .EXE
executable file.

-Include files: Lists include files that the current project file uses.

6.2.9. Window Menu

The Window menu contains commands for changing the appearance of the
TURBO C+ + integrated development environment windows.

• Size/Move: Lets the user change the size and position of a window.

• Zoom: Resizes the current window to fill the entire screen. Reselecting
this option restores the window to its original size.

• Tile: Displays all windows so they fit on the screen; Le., no windows
overlaps another window.

• Cascade: Displays windows so they overlap one another.

• Next: Makes another window active. (If there is more than one window on
the screen, then Next flips from one window to another, making the other
one active.)

• Close: Removes the active window from the screen.

• Message: Opens the Message window (Le., the window where commands,
such as compiling, linking, etc., are displayed at the time TURBO C+ +
performs respective jobs). If the Message window is already open, this
command activates the message window.

• Output: Opens a window that shows program output.

• Watch: Opens a Watch window and makes it active; this window displays
variables and their values.

• User Screen: Displays a full screen of the program's output.

• Project: Lists all files in the current project.

• List: Displays all files currently open.

www.manaraa.com

146 Chapter 6

• Project Notes: Lets the programmer write information about each project.

• Register: Displays CPU registers and their contents to help the user debug
a program.

6.3. X-WINDOW PROGRAMMING

The X is a windowing and graphics system designed to operate over a
network.3 Therefore the system always involves at least two parts: a client and a
server talking to each other over a communications channel. They communicate
using the X protocol, which defines a compact way of describing window opera
tions, graphics operations, and events (button selections, operations completed,
etc.).

A client is an applications program anywhere on the network that makes
requests to the server to do something on the screen. The client is programmed
using XLIB,4 a low-level c language programming interface to X services. The
XLIB converts XLIB library calls into X protocol requests to the server.

The server controls the display of the particular terminal; therefore its code
is written by the specific manufacturer of the graphics hardware. Thus servers
appear as black boxes to users and X programmers, allowing any machine
communicating with the X protocol to connect to the network.

The X toolkitS is a higher level subroutine library that implements such user
interface operations as menus or scrollbars (commonly known as widgets) using
XLIB. The standard toolkit distributed with X is the Xt toolkit. A toolkit is
essentially a much simpler interface for programming X; it insulates the pro
grammer from the details of, say, creating a window or resizing a window.
Widget sets are collections of widgets, and these provide the most common
windowing operations with a certain look and feel specific to the vendor. For
example two popular widget sets, Open Software Foundation's Motif6 and Sun
Microsystem's Open Look,7.s are two different widget sets designed to work
with Xt. They differ in how their windows look, their scroll bars operate, fonts
change, etc. Toolkit intrinsics facilitate new widget creation.

Before getting into XLIB programming, there are certain things to know
about X-Windows system architecture:

• X is a windowing system for bit-mapped color, gray-scale, and mono
chrome graphic displays. A display is any number of screens, a keyboard,
and a mouse.

• X is a network-oriented windowing system. Client applications can run on
many different machines by sending requests to the server display and
receiving events (keyboard, mouse, etc.) from the server. The server there-

www.manaraa.com

Programming Tools 147

fore is the middle man between user programs and the local system. Since
clients can run on other machines across a network, distributed processing
can be performed, helping to balance system loads.

• A separate program controls the screen layout, appearance, etc. It is called
the window manager. The window manager is also written with XLIB, and
it has special privileges for controlling windows appearing on the user's
screen. Clients or applications must cooperate with the window manager
and its window layout policy by indicating how they want their windows
displayed. The X does not require a particular type of window manager,
thus allowing the market to decide what the standard window interface
should be. This enables better designs than present ones to become avail
able.

• There is a major difference in programming X and in programming UNIX
or DOS: Event-driven programming allows the user to tell the program or
client what to do. For example in UNIX, when a program wants to obtain
an input from the user, it must poll for input using a function to obtain
characters. Alternatively in X functions for receiving events (keypress,
mouse input, reexposing a hidden portion of a window) are used to cause
the program to branch accordingly. Numerous events of many different
types are placed in a queue, which is usually processed in first in, first out
order. Event-driven programming is a natural form of programming for
any mouse-based windowing system.

• The X is extensible: Separate code on the same level as XLIB subroutines
define a method for adding new extensions, such as displaying PostScript.
This is necessary to ensure that third-party and software vendors do not
have to modify existing core XLIB subroutines to add a new extension;
they merely have to add new code accordingly.4

The first thing to do to use XLIB is to include (Xll/Xlib.h). The following
program shows an X application that connects to the server, creates a window,
makes it visible, sleeps for 10 seconds, and exits.

#include(stdio. h)
#include(stdlib. h)
inc1ude(Xl1 / xlib . h)
main()
{
Display *mydisplay;
Window mywindow;
int myscreen;
unsigned long myforeground, mybackground;

www.manaraa.com

148 Chapter 6

/ * connect to the server * /
mydisplay = XOpenDisplay(UU)i
if (mydisplay == NULL){
fprintf (stderr, Ucannot connect to serverO) i

exit(EXIT_FAILURE)i
}
/ * get a screen * /
myscreen = DefaultScreen (mydisplaY)i
/ * look up ublack u and uwhite U * /
mybackground = WhitePixel (mydisplay,myscreen)i
myforeground = BlackPixel (mydisplaY,myscreen) i

/* create a window at (100,50), width 350, height
250 * /
mywindow = XCreateSimpleWindow (mydisplay, De
faultRootWindow
(mydisplay), 100, 50, 350, 250, 2, myforeground,

mybackground) i

if (mywindow == NULL) {
fprintf (stderr,RcannotopenwindowO)i exit (EXIT

_FAILURE) i

}
/ * pop this window up on the screen * /
XMapRaised (mydisplay,mywindow) i

XFlust (mydisplay) i

sleep (10) i

exit (EXIT_SUCCESS) i

}

To compile the program, it must be linked with the X library using the -I
option at the end of the command line:

cc -0 p7-1 p7-l.c -lXll

In the preceding program, XOpenDisplay opens a connection to the X server
that controls a display. The NULL string passed to it means that the DISPLAY
variable in the user's environment is used by default. Mydisplay is a pointer to a
Display structure defined in (Xll /Xlib.h). This structure defines the place where
all subsequent X requests are sent. XOpenDisplay returns NULL if the function
cannot be performed (Xlib routines generally return 0 if there is an error). The
macro DefaultScreen returns an integer that represents the default screen for the
user's server (Xlib subroutine names begin with uppercase X while macros do
not). The macros WhitePixel and BlackPixel obtain values for white and black on

www.manaraa.com

Programming Tools 149

the monitor screen. This is a good programming practice for ensuring total
portability, because we cannot assume that black is 0 and white is I (on color
screens it may be different). The function XCreateSimpleWindow is called with
the format:

Window *XCreateSimpleWindow (Display *display,
Window window,
int ulx, int uly, int width, int height, int
borderwidth, int foregroundcolor, int background
color)

where display is the server on which the window is to be created, window is the
parent window, ulx and uly are the position of the upper left-hand comer of the
window, the rest is self-explanatory. This function does the bulk of the work of
creating a window. The macro, DefaultRootWindow returns the root window of
the server (the parent of the new window). Note that an entire hierarchy of win
dows can be defined. Once a window is created, it still must be displayed or
mapped. XMapRaised makes the window visible on the display and causes it to
appear on top of existing windows or to be moved to the front. When XF/ush is
called, it causes queued requests to be sent to the server. The following program
makes use of the window created in the preceding program and incorporates
mouse events:

#include(stdio.h)
#include(stdlib.h)
#include(X11/Xlib.h)
main()
{
Display *mydisplay;
Window mywindow ;
int myscreen;
unsigned long myforeground, mybackground;
XEvent myevent;
KeySym mykey;
int i;
char text [10];
int doneflag = 0;
I * connect to the server * I
mydisplay = XOpenDisplay(HH);
if (rilydisplay == NULL){
fprintf (stderr, Hcannot connect to serverO) ;
exit (EXIT_FAILURE);

www.manaraa.com

150 Chapter 6

}
/ * get a screen * /
myscreen = DefaultScreen (mydisplay) ;
/ * look up "black" and "white" * /
mybackground = WhitePixel (mydisplay,myscreen);
myforeground = BlackPixel (mydisplay,myscreen);
/* create a window at (100,50), width 350, height

250 * /
mywindow = XCreateSimpleWindow (mydisplay,
DefaultRootWindow(mydisplay),
100,50,350,250,2, myforeground, mybackground);
if (mywindow == NULL) {
fprintf (stderr, "cannot open windowO) ;
exit (EXIT_FAILURE);
}
/* ask to receive Expose, ButtonPress, and Key
Press events * /
XSelectInput (mydisplay, mywindow, ButtonPress
MasklKeyPressMask
IExposureMask) ;
/ * pop this window up on the screen * /
XMapRaised (mydisplay, mywindow) ;
/ * the event loop * /
while (!doneflag){
/ * get the next event in the event queue * /
XNextEvent (mydisplay, &myevent);
switch (myevent.type){
case ButtonPress:
/ * user pressed a pointer button * / / * draw the

rectangle * /
XDrawRectangle (mydisplay, mywindow ,
Default (mydisplay,myscreen),
myevent.xbutton.x,myevent.xbutton.y,50,50) ;
/* move the cursor relative (50,50) * /
XWarpPointer(mydisplay, None, None, 0, a, a,

0, 50, 50);
break;
case KeyPress:
/ * user pressed a key, see if it's a "q" * /
i = XLookupString (&myevent, text, la, &mykey,

0) ;

if (i == 1 && *text == "q")
doneflag = 1;

www.manaraa.com

Programming Tools

break
case Expose:
/ * ignore Expose events * /
break;

}
}
/* exit gracefully * /
XDestroyWindow (mydisplay, mywindow) ;
XCloseDisplay (mydisplay);
exit (EXIT_SUCCESS);
}

151

In the preceding program, the XSelectlnput function requests notification of
a mask specifying the events to receive. The program asks to receive Expose (the
event the window appears on the screen or whenever a part of the window is
obscured and subsequently exposed), ButtonPress (the event the mouse button is
selected), and KeyPress (the event a key is selected from the keyboard) events.
Incidentally mask constants are all defined in Xlib.h. The event loop is entered
when XNextEvent is called to flush the event request queue, then return the next
event. The XNextEvent function takes two arguments, a display and a pointer to
an XEvent union. The XEvent union is a combination of all different event
structures, one for each event type. In this program the XExposeEvent structure is
used in this union. The type entry in the XEvent union specifies the event type
returned by XNextEvent. The program then switches on myevent.type to deter
mine which of the three event types has occurred. If a mouse button was selected,
a rectangle is drawn with the function XDrawRectangle, which requires the
following format:

XDrawRectangle (Display *display, Window window, GC
gc, int ulx, int uly, int width, int height)

where gc is a graphics context (or GC, discussed later), ulx and uly are the upper
left-hand comer of the rectangle in the window's coordinate system. For this
program the default GC is used by calling the macro DefaultGC. After the
rectangle is drawn, the cursor is moved to the right-hand comer of the rectangle
by a call to XWarpPointer with the following format:

XWarpPointer (int *display, Window source, Window
destination, int
ulx, int width, int height, int x, int y)

If a source window is given, then the integer parameters specify a rectangu-

www.manaraa.com

152 Chapter 6

lar region that the cursor must be in for the move to take place; if a destination
window is given, x and y specify the destination position relative to the origin of
that window. If None is specified as the source, the rectangle is ignored and the
cursor is moved. If None is specified as the destination, x and y specify offsets
from the current cursor position. Since None is specified for both the source and
destination windows, the cursor is moved down and over 50 pixels from its
present position (the width and height of the rectangle that is drawn). If the event
is a key selection, the program checks to see if q were selected, which would
cause the program to exit the event loop and terminate. To enter the string, the
program uses XLookupString, which looks up keyboard event information in the
XEvent union, then returns the correct mapping for the key selected. Its format is

int XLookupString (XEvent *event, char *text, int
length, KeySym *key, XComposeStatus *compose)

where event is a pointer to the XEvent structure returned from the XNextEvent
that received the key selection event; text is a pointer to a buffer where a string
version of the key is placed; length is the size of the buffer; key is a pointer to a
KeySym structure where information about special keys being selected, such as
shift and control keys, is placed, and compose is a pointer to an XComposeStatus
structure that is presently unused but will someday allow programmers to process
multikey sequences entered with a Compose key. If the event is an Expose event,
nothing is done. Normally, the code here is used to redraw the just exposed
portion of the window. Saving the coordinates of all drawn rectangles and re
drawing them when an Expose event occurs accomplish this.

All X-drawing routines use a value called a graphics context (GC) to specify
many variables to a graphics request. These include such values as line width and
style, color, font, clipping window, etc. The GCs provide an efficient means of
communicating graphics parameters to the server. By specifying a GC, the user
does not have to specify a bewildering array of information to every drawing
routine. If the server is capable of caching several GCs, a client can switch
between GCs quickly, allowing the program for example to draw dotted, dashed,
and solid lines without sending line style changes with every draw request.3

Having gone through the basic steps required to set up a program using
XLIB, it is clear that an application of XLIB can still be tedious. This is why widget
sets were created in Motif, as illustrated in the following program:

/* hello.c--
Initialize the toolkit using an application context
and a toplevel
shell widget, then create a pushbutton that says
Hello using the

www.manaraa.com

Programming Tools

R4 varangs interface. * /
#include (Xm/Xm.h)
inc1ude(Xm / PushB. h)
main(argc,argv)
char *argv [] ;
{
Widget toplevel,button;
XtAppContext app;
void i_was_pushed () ;
XmString label;
toplevel = XtVaApplnitialize (&app, "Hello",

NULL, 0, &argc, argv,
NULL, NULL) ;
label = XmStringCreateSimple("Push here to say
hello") ;
button = XtVaCreateManagedWidget("pushme",xm-
PushButtonWidgetClass,
toplevel, XmNLabelString, label, NULL);
XmStringFree (label) ;
XtAddCallback(button,XmNactivateCallback, i
_was _pushed, NULL) ;
XtRealizeWidget(toplevel) ;
XtAppMainLoop(app);

}
void i_was_pushed (w, client_data, cbs)
Widget W;
XtPointer client_data;
XmPushButtonCallbackStruct *cbs;
{
printf ("Hello Yourself! ") ;

}

153

The preceding program produces a Motif-style push button with the label,
"push here to say hello." Before widgets are created, the toolkit (Xt) must be
initialized by using XtVaApplnitializeO. The widget returned by this function is a
shell widget. When other widgets are created, these will be children of this top
most widget. The first argument to XtVaApplnitialize is the application context
address. This is a structure that lets Xt manage Xt internal data associated with the
application. The second argument is the application's class name. It is used in a
resource database allowing specification of values that apply to all instances of an
application, widget, or resource. The third and fourth parameters allow the user
to specify an array of command line arguments defined for the program. In the

www.manaraa.com

154 Chapter 6

preceding NULL and 0 are provided as parameters. The fifth and sixth arguments
contain the value and the count of command line arguments. The seventh argu
ment is usually a pointer to a list of fallback resources for the top-level widget. If
the app-defaults file is not installed, fallback resources protect the program from
crashing. If they are installed then this argument is ignored.

The call:

button XtVaCreateManagedWidget(RpushmeS,Xffi-
PushButtonWidgetClass,
toplevel, XmNLabelString, label, NULL) i

creates a button as a child of the Shell window. The first argument, pushme, is the
name of the widget in the resource database, so all subsequent calls to change this
widget's resource refer to the widget's name as in hello.pushmeforeground:
blue. This command changes the color of the button label in Hello.e. The second
argument is the widget class type to be created. The third argument is the parent.
The rest of the arguments are a variable length list of resource settings. Each
resource name begins with the prefix XmN and identifies the resource as being
Motif related. Many different types of resources can be specified, such as width,
height, and label of the push button. If they are not specified, then default values
are used. Resources are set not only during the creation of widgets, but the
routine XtVaSetValues overrides any values the widget was initialized with.

Any widget expecting to call an application function for the purpose of, say,
passing control from the widget to the application programmust define one ormore
call-back resources. One common way of connecting an application function to a
call-back resource is by calling XtAddCaliBaekO, as shown in the preceding
program. The first argument is the widget in which the callback is to be installed, in
this case, button. The second argument is the name of the resource, and the third
argument is a pointer to the call-back function. The fourth argument is the data to be
passed to the application when called, and these are usually pointers to data
structures. Right now widgets exist only as data structures on the client side.
XtRealizeWidget(toplevel) creates its windoiw. After this call widgets are fully
instantiated. Finally XtAppMainLoop(app) gives control of the application to Xt,
which sends information about events to the widgets, which in tum pass the
information to the application with callbacks. Unlike traditional UNIX or DOS
programming, the code here is idle until summoned by user-generated events.6

6.4. UNIX NETWORK PROGRAMMING

In structured programming global variables and parameter passing pass data
between modules. All modules have something in common; that is, they are all
part of the same program. However modules of the same program are not exe-

www.manaraa.com

Programming Tools 155

cuted concurrently, which makes it easy for any module to access the same data
without problems. Thus there are no instances of two modules trying to change
the same data at the same time, whether it is in RAM or on disk.

Interprocess programming is not so simple. First of all to write programs
that act between processes, a suitable operating system, such as UNIX, must be
used. Such operating systems as MS-DOS or CP/M do not support multitasking and
therefore do not support interprocess programming. There are also many more
problems involved with running a time-shared, multitasking system. Two pro
cesses may want to access the same file at the same time, for example, one file
accessed by two text editors. This problem can be solved by using file locking. A
message may want to be passed between a process and a related (child) process.
For this a pipe between the two processes can be created. To communicate
between two processes on different computers on the same network, a socket
may be used. These and other aspects of interprocess communication are dis
cussed in this section, as well as servers and clients.

6.4.1. Simple Interprocess Communication

6.4.1.1. File Locking

A lock on a file prevents some other processes from accessing that file:

lockf (char *filename, intLOCKING_MODE, long size) :

where LOCK_MODE can be either one of the following: LOCK_SH (shared lock;
only a certain group of processes can work on the locked file), LOCK_EX
(exclusive lock; only one process can use the file), or LOCK_UN (unlock the file).

6.4.1.2. Pipes

A pipe functions as an intermediate buffer to pass information between a
parent process and a child process. The pipe is a unidirectional, first in, first out
queue between two related processes. How these processes are actually imple
mented depends on the operating system. The comparison to an actual liquid
carrying pipe works well. The stream of liquid that passes through a pipe is the
data stream. The first drops of liquid (data) that enter the pipe are the first drops
to come out the other end. Liquid (data) flows in one direction. A longer pipe can
hold more liquid. (UNIX pipes are of variable length; that is, the buffer (pipe) can
vary in size.) There are two ends to a pipe: one end that the stream enters (write
end) and the other end that the stream exits (read end).

The C function call to create a pipe is

int pipe (int *filedes)

where filedes points to an array that contains the following: filedes [0] is the file

www.manaraa.com

156 Chapter 6

descriptor for the read end to the pipe, and filedes [1] is the file descriptor for the
write end of the pipe. The file descriptor is just a way of referencing the pipe. It
refers to the buffer that the operating system set up to be the pipe. To write a
string string of size size (in terms of bytes) to the pipe filedes [1] (put data into),
the following function should be called:

void write (filedes[l], int *string, int size)

To fill a string string of size size (in terms of bytes) from the pipefiledes [0] (read
data from) the following function should be called:

int read (filedes[O] , int *buffer, int size)

This functions returns a negative value if there is an error. The following function
closes either the write end or the rear end of a pipe:

void close (filedes[(O or 1)])

A pipe is useless if it is used in only one process; that is, if the read end and
the write end can be accessed by only one program. On the other hand, a pipe
cannot be set up between two arbitrary processes. A pipe must be established
between two related processes: a child and its parent. The steps involved to create
a pipe are

1. The parent invokes the pipe function and obtains the file descriptors.

2. The parent creates a copy of itself (creates a child).

3. The parent closes the read end of the pipe.

4. The child closes the write end of the pipe.

5. A unidirectional pipe is now created from the parent to the child.

When a child is created by its parent, all files opened by the parent are also
open to the child, and all variables have the same values, including file descrip
tors for the pipe. If a pipe has to be created in the opposite direction, the parent
closes the write end, and the child closes the read end. Bidirectional pipes can be
implemented by using two pipes.

6.4.1.3. FIFO (First in, First out) Structures

A UNIX FIFO structure is almost identical to a pipe except that processes
acting on the FIFO are not required to be related. A FIFO can be thought of as a
named pipe, with the name being how an arbitrary process accesses the buffer.
The name is a UNIX pathname. The following function creates a FIFO:

www.manaraa.com

Programming Tools

void mknod (char *pathname, int mode, int dev)

157

where pathname is just a UNIX pathname, mode specifies read and write pennis
sions for the FIFO, and dev is ignored when creating a FIFO. To read from or
write to a FIFO, the following function can be used:

int open (char *pathname, int mode)

where pathname is the UNIX pathname specifying the pipe, mode is either 0 for
reading or I for writing. This function returns the file descriptor of the FIFO.

6.4.2. Network Interprocess Programming

Up to now we have discussed communication between processes on the same
computer. Now we consider processes at different sites. There are naturally
additional complications when programming on a network. More things must be
specified, since more things must be known about processes that are communicat
ing. When a pipe is created, it is necessary to know is where the read end and the
write end are. For a FIFO we must give the buffer a name, since the two processes
working on it do not have a parent-child relationship and therefore do not have all
opened files in common. For internetwork programming, even more needs to be
specified. First a local address must be specified. This is the unique number of each
computer connected to the network. The Internet standard requires only 4 bytes,
while the XNS standard requires 10 bytes. This way when a packet is sent over the
network, the receiver knows who sent it. Second a local process must be specified.
The local process identification is necessary because sometimes the superuser,
group, or the authority ofa specific user is required to access a resource on a foreign
system. Third a foreign address must be specified to route data sent over the network
correctly. Finally a foreign process must be specified. This process is the server,
which returns data requested by a client. A server is specifiedwhen a client connects
with a serving computer. The client-server relationship is important. It is obvious
that a process cannot create a child process on another computer on the same
network. The parent-child relationship implies that all open files are shared, and the
relationship is basically symmetrical. This is not the case in network programming.
A local process that needs something done by a foreign process is the client. The
foreign process that does the work and returns the data requested is the server; this is
a one-sided relationship. A client initiates a request, then receives data from the
server, and uses it. The serverwaits for a client to request its services, does the work,
then waits for the next client.

A socket is the name used for a connection between two processes over a
network. It is opened like a FIFO, and the function for creating the socket returns

www.manaraa.com

158 Chapter 6

a file descriptor, as does the function call for a FIFO. Unlike a FIFO or a pipe, the
connection is bidirectional.

The following function opens a socket:

int socket (int family I int type, int protocol)

where family is one of the constants defined in the socket.h header file. This
function lets the operating system know what protocol to use when talking on the
network. The protocols are

• AF_UNIX: UNIX internal protocols

• AF_INET: Internet protocols

• AF_NS: Xerox NS protocols

• AF_IMPLINK: IMP link layer protocol (for intelligent packet switching
network connections)

This family of protocols is network dependent. UNIX internal protocols are
used to create pipes and FIFOs. The Internet protocol is used for most LANs and
WANs; it is the most widely used protocol for networking. Xerox NS protocol is
specific to that vendor, and it is used with its network hardware. The parameter
type is used to specify the type of connection with the server. For simplicity only
two types of sockets are discussed here:

• SOCK_STREAM: Sets up a stream-type socket.

• SOCK_DATAGRAM: Sets up a datagram socket (connectionless).

A stream socket is much like a FIFO: A connection between two processes
remains connected until either the server or the client breaks the connection. A
datagram socket does not make a connection-it only sends and receives data
across the network. The difference between the two is that a stream socket does
not have to specify a foreign address and foreign process each time it is used. On
the other hand, a datagram socket allows a process to communicate with many
other foreign processes at the same time. The function socket() returns a socket
descriptor, a value used for future references to the socket. The protocol and the
type of connection are specified in the socket function call. The local process, the
local address, the foreign process, and the foreign address remain to be specified.
To do this other functions must be called. The following function binds a name to
an unnamed socket:

int bind (int sockfd, struct sockaddr *myaddr, int
addrlen)

www.manaraa.com

Programming Tools 159

where sockfd is the socket descriptor returned by a previous call to socket(),
myaddr is a pointer to the following structure that is passed to the function. The
structure looks like the following:

struct sockaddr {
unsigned short sa_family; 1* address family:AF
_xxx value * 1
char sa_data [14]; 1* up to 14 bytes of protocol
specific address *1

For example if the sa_family is AF_INET, sa_data is a 4-byte number. This
number is found by logging into the system and entering the command hostid.
The parameter addrlen is the size of the address structure. The function returns a
value less than 0 if there is an error condition.
After bindO is called, the local process and local address are specified. Since

the data needed to specify the local process changes from one invocation to the
next, the bindO function knows what process it is in and passes this information
to the foreign process when it is needed. All that is left to do now is to specify the
foreign address. The foreign process is determined by the server. For a stream
socket, a connection is created by:

int connect (int sockfd, struct sockaddr *servaddr,
int addrlen)

where sockfd is the value returned by the socket system call, servaddr is a pointer
to a structure that contains address information for the foreign computer; the
structure is of the same type as in bindO. As before addrlen is the size of the
address structure.
To pass data through a connection-oriented socket, two functions are used,

one to send data and one to receive

int send (int sockfd, char *buff, int nbytes, int
flags)
int recv (int sockfd, char *buff, int nbytes, int
flags)

In the preceding functions, sockfd is the socket file descriptor, buff is a
pointer to the buffer being sent (or the buffer received data enters), nbytes is the
number of bytes in the buffer, andflags is usually zero (it is used only for more
advanced socket programming and is not discussed here). The server process
creates a socket and binds an address to that socket, just as a client does. The
difference is that the server is not connected to anything: It waits for a client
process to connect to it. Therefore instead of invoking the connectO function, the
server listens at the socket:

www.manaraa.com

160

int listen (int sockfd, int backlog)

Chapter 6

where sockfd is the socket file descriptor. This function tells the server which
socket to listen to. The parameter backlog specifies the number of additional
server requests that can be queued by the serving system while it is waiting for
the acceptO system call to be invoked. A server first connects with a client, then
accepts [acceptOJ the client, and creates a child server to handle backlogged
clients waiting to access the server. Backlogs occur during the period when a
client is accepted [acceptOJ and a new server is being created.

Now the server hears a client knocking and lets it in:

int accept (int sockfd, struct sockaddr *peer, int
*addrlen)

where sockfd is the socket descriptor on the foreign system that the server was
listening [listenOJ to, peer is a pointer to a function that obtains the address and
process information about the client process, and on return contains the size (in
bytes) of the sockaddr structure. The pointer returns a new socket descriptor. The
original file descriptor is used by the child process to service the connection, and
the new file descriptor is used by the parent to service new clients. If there is an
error, the file descriptor returns a negative value. When a client is accepted
[acceptOJ, the foreign process is determined.
Connectionless clients do not invoke connectO, so they do not have a

specified foreign address to send [sendOJ to or receive [recvOJ from a socket.
Instead functions specify the data to be sent (what) and the foreign address
(where). Since the foreign address is specified at every I/O function invoca
tion a connection does not have to be maintained. These functions are self
explanatory, since they are similar to functions used for connection-oriented
transfer.

int sendto (int sockfd, char *buffer, int nbytes, int
flags, struct sockaddr *to, int addrlen)
int recvfrom (int sockfd, char *buffer, int nbytes,
int flags, struct sockaddr *from, int addrlen)

Example 6.1. (Ref. 9) Ping is a standard routine for determining if the
computer at the address specified at the command line is connected to
the network. Ping sends a datagram to the foreign computer, then waits
for a reply. If it obtains a reply, Ping prints a message indicating that the
foreign address is connected to the network. Some implementations also

www.manaraa.com

Programming Tools

indicate how long the datagram took to make the round trip. Example
6.1 shows how the previously discussed functions can be used to imple
ment Ping. Note: Although Ping uses the syntax of c, it is really no
better than pseudocode.

/ *Ping client routine ping (hostname)* /
main (hostname)
{
struct protoent *protoptr;
struct sockaddr *myaddr, *servaddr; / * structure

defined above * /
char buffer[30]="This is a test string",recv

buffer[30]="";
int sockfd, i. bufsize, MAX_WAIT= (some large

number, about 3 seconds worth) ;
/ * this function searches the file / etc /proto

cols
for the specified name, and returns a pointer
to the structure that contains the protocol num-

ber.
'udp' stands for unix datagram protocol.
*/
/ * make socket * /
protoptr=getprotobyname("udp");
sockfd=socket(AF_INET,SOCK

_DATAGRAM,protoptr->proto) ;
/* make and give values to socket address struc

ture * /
/ * hostid () is a system call that returns the lo

cal address * /
myaddr=(struct sockaddr *)malloc(sizeof-

(struct sockaddr)) ;
myaddr->family=AF_INET;
strcpy(myaddr->sa_addr,hostid());
/ * bind address to socket * /
bind(sockfd,myaddr,strlen(myaddr->sa

_addr)) ;
/ * get address of foreign host (ping server) * /
servaddr=gethostbyname(hostname) ;
/ * send the test buffer * /
sendto(sockfd,buffer,strlen(buffer) ,0,-

strlen(servaddr->sa_addr)) ;

161

www.manaraa.com

162 Chapter 6

/ * wait for the packet to echo * /
for(i=Oii<=MAX_WAIT && bufsize=Oii++)
recvfrom(sockfd,recvbuffer,strlen(buffer) ,0,
servaddr,strlen(servaddr->sa_addr)) i

if (!strcmp(buffer,recvbuffer)
printf("Host %s is alive. ",hostname) i

else printf("Host %s does not respond.",host-
name) i

close (sockfd) i

}
/ *Ping server routine. * /
main ()
{
struct protoent *protoptr i

struct sockaddr *myaddr, *clientaddr i

char buffer [3°]i

int sockfd, int backlog i

/ * make socket * /
sockfd=socket(AF_INET,SOCK

_DATAGRAM,protoptr->proto) i

/ * make and give values to socket address struc
ture * /

/ * hostid () is a system call that returns the lo
cal address * /
myaddr=(struct sockaddr *)malloc(sizeof-

(struct sockaddr)) i

myaddr->family=AF_INET i

strcpy(myaddr->sa_addr,hostid())i
/ * bind address to socket * /
bind(sockfd,myaddr,strlen(myaddr->sa

_addr)) i

/ * process waits for a client * /
listen(sockfd,backlog) i

/ * accepts the client and gets its address * /
accept (sockfd,clientaddr,strlen(client-

addr->sa_addr)) i

/* this function, omitted, will create a child
process to handle the client, while the server will
restart and wait for a new ping client.
*/
create_child () i

www.manaraa.com

Programming Tools

/ * the child will then do the following: * /
/ * receive the string from the client * /
recvfrom(sockfd,buffer,30,O,clientaddr,
strlen(clientaddr->sa_addr)) ;
/ * and send it back * /
sendto(sockfd,buffer,strlen(buffer),O,clientaddr,
strlen(clientaddr->sa_addr));
close (sockfd) ;
}

PROBLEMS

163

1. Modify the function forms of the sample program so that the user can
specify the position of each item in the window.

2. Extend the sample program with the function check_box, which realizes
multiple choices. The function should take an array of strings as the input, create
a window, create a check box for each string, and display the check box/string
pairs in one or two columns (depending on the maximal length of the strings and
the width of the window). The window should contain two buttons: OK and
CANCEL. The user selects strings of interest by pressing the mouse button. Once
all choices are made, the user selects the OK button, the function returns the
indices of the strings checked, and returns 1 as its value. The user can select
CANCEL any time and the function returns -1 as its value.

3. Repeat Problem 6.2 except create a button for each input string so that
the user selects buttons.

4. Combine the two functions forms and buttons into one function forms
_and_buttons to contain string entries and choice buttons in one window. Speci
fy the interface to the function clearly.

5. The network programming tool discussed in Chapter 6 is not object
oriented. Sketch an approach that provides an object-oriented tool for UNIX
network programming. (Hint: Can you provide an object model for network
aspects of UNIX?)

www.manaraa.com

/64

#include "sheu-par.h"
#include <edit.h>
#include <button.h>
#include "hwind.h"
#include <ctype.h>
#include <string.h>
#include <owl.h>
#include <dialog.h>
#include <listbox.h>
#include <inputdia.h>

/**** Fonns_transfer is the array used
to transfer the changes from
the fonn to the main window.
When the user makes a change to
a field in a fonn. the array
that stores item characteristics
should be updated to reflect the
change. As can be seen. the
array is globally defined. ****/

char Fonns_transfer [16][5][33];

int FonnsJeturn;

/**** This is a global integer and is
set in the Choices window. The
user clicks on an item in the menu
and this int value is set to
the index of the selected item.
The main window function Choices
then returns this value. ****/

int Choices_return;

/**** This is the declaration of the
class derived from TApplication.
All applications need to have
such a class with the member func
tion InitMainWindow which sets up
the main window of the
application. ****/

class TMyApp: public TApplication
(
public:
TMyApp(LPSTR AName, HANDLE hInstance,
HANDLE hPrevInstance. LPSTR IpCmdLine,
int nCmdShow) :
TApplication(AName. hInstance,
hPrevInstance.lpCmdLine. nCmdShow) {};

virtual void InitMainWindowO;
};

/**** This is the class for the window
that is created when the Fonns
function is executed. We will
comment specific parts of the class
itself and also its member functions.
The class is based on the
ObjectWindows class TDialog and
sets up a modal dialog box that

Chapter 6

hangs the calling function until
user input is received and the
box ix closed. ****/

class TFonn2Window : public TDialog
(
public:
char Items_store[16][5][33];
int councstore;

/**** Edit is an array of pointers
to TEdit, an ObjectWindows class
that sets up an edit box. ****/

PTEdit Edit[16];

/**** Static is an array of pointers
to TStatic. and ObjectWindows
class that displays text on the
screen. text that is not modified
by the user. This is used for the
labels of each of the fields. ****/

PTStatic Static[16];

/**** Height and width refer to
the Fonns window ****/

int height, width;

/**** This is the constructor to
the TFonn2Window class. It takes
as arguments. the parent window,
the name, the passed array. and
the number of items. count.
In addition to the above a string
is also passed that will be the
caption to the dialog box. This
is "ATitle." ****/

TFonn2Window(PTWindowsObject AParent,
LPSTR name, LPSTR ATitle. char
Items_input[16][5][33], int
counUnput);

/**** This is an overloaded function.
It is defined in TDialog and re
defined here. It is executed
right after the constructor of
the class is invoked. ****/

virtual void SetupWindowO;

/**** The function Ok is also an
overloaded operator which is
redefined in this derived class.
It gets executed when the OK button
of dialog box is pressed. ****/

virtual void Ok(RTMessage Msg)
=[ID_FIRST + IDOK];

Figure 6.1. Program listing.

www.manaraa.com

Programming Tools

1**** The function HandleBullon2Msg
gets executed when the CANCEL bulton
is pressed. ****1

virtual void HandleBulton2Msg(RTMessage
Msg)
=[ID_FIRST + ID_BlTITON4);
private:

1**** These are private functions of
the class and check for integer,
string and float values and using
these check for valid values. ****1

BOOL is_int(char temp(33));
BOOL is_float(char temp(33));
BOOL is_string(char temp(33));
BOOL is_value(char item(33), char temp(33));
);

/**** The function is_int checks a
string to see whether it is integer. ****/

BOOL TFonn2Window::is_int(char temp(33))
I
if (!strcmp(temp," "» return TRUE;
if (!isdigit(temp[O))) return FALSE;
for(int i=O; i<strlen(temp); i++)
I if (!isdigit(temp[i))) return FALSE;
)
return TRUE;

)

1**** The function is_float checks whether
a string qualifies for float. ****1

BOOL TFonn2Window::is_float(char temp(33))
I
if (!strcmp(temp," "» return TRUE;
BOOL dec = FALSE;
for(int i=O; i<strlen(temp); i++)
I if (!isdigit(temp[i)) &&
!«temp[i] = '.') &&
(dec = FALSE)))

{ return FALSE;
)
if (temp[i] = '.')dec = TRUE;

)
return TRUE;

)

/**** The function is_string checks to
see if argument is a valid string. ****1

BOOL TFonn2Window::is_string(char temp(33))
I
if (!strcmp(temp," "» return TRUE;
if (isalpha(temp[O)))
{ for(int i=O; i<strlen(temp); i++)

I if (!isalpha(temp[i))&&
!isdigit(temp[i)) &&
!ispunct(temp[i)))

165

return FALSE;
)
return TRUE;

)
else
I return FALSE;)

)

1**** The function is_value takes
two arguments, the first being the type
and the second being the input value.
If the type specified is
consistent with the value the function
returns true, else returns false. ****1

BOOL TFonn2Window::is_value(char
item(33), char temp(33))

I
if (!strcmp(item, "int"»
I if (is_int(temp» return TRUE;
}
if (!strcmp(item, "float"»
I if (is_float(temp» return TRUE;
}
if (!strcmp(item, "string"»
I if (is_string(temp» return TRUE;
}
return FALSE;

)

1**** This is the constructor for
the TForm2Window. The special thing to
notice here is that it accepts an array
and an integer count. It
copies the passed array to its own data
member array and works on
this copy of the passed array. As we'll
see later, when the array
if updated it is sent to a global transfer
array and taken by the
array passed to the Fonns function.****1

TFonn2Window::TFonn2Window(PTWindowsObject
AParcnt, LPSTR name, LPSTR ATitle,
char Items_input[l6J(5J(33],
int counUnput)
: TDialog(AParent, name)

I
int use_len;
int num_lines, x_position. y-POsition;
int size[l7];
width =0;
height=O;
BOOL sec30Iumn[l7];
int offset, max_edit;
BOOL one_col;
int row_size;
row_size = 0;
int max_I, max_2, max_3;

1**** Copies passed int into its own
data member counCstore. ****1

Figure 6.1. Continued.

www.manaraa.com

166

counCstore = count_input;
char temp[16][331;

/.... Copies passed array into its
own data member Items_store...../

for (int i=O; i<councstore; i++)
(strcpy(Items_store[i][OI.

Items_input[iJ(OJ);
strcpy(Items_store[iI[II.

Items_input[iJ(IJ);
strcpy(ltems_store[i)[2).

Items_input[i][2J);
if (!strcmp(Items_input[i][31......»
(strcpy(Items_store[iJ(31." ");
I
else
[strcpy(Items_store[i][31.

Items_input[i][3J);
I
if (!strcmp(Items_input[i][4)......»
(strcpy(Items_store[i][4)." ");
)
else
(strcpy(Items_store[i][4),

Items_input[i][4J);
I
}

/····Items_store now have the passed array
If wanted length is more than 32.
it cuts to 32. • •••/

for (int h=O; h<count_store; h++)
(if «atoi(ltems_store[h][2]» > 32)
(strcpy(Items_store[hJ(2). "32");
)
}

/•••• The array temp is what will be shown
in the edit boxes in
the Form window. Ifthere's no new value.
we take the old
value, else we take the new value...../

for (int p=O; p<count_store; p++)
{
if (strcmp(ltems_store[p][41," ..»
strcpy(temp[pI. Items_store[p][4J);

else
strcpy(temp[p).Items_store[p][3J);

/•••• The rest of the code determines
the width, height. and the
position of the Form window and
also of the edit boxes and
static labels in the window.
Basically we determine the
position of each item before
actually placing. The convention
used is that if there is only one

Chapter 6

column. align edit boxes to
the left, else align them to the
right. It should be noted
that this scheme is implemented with
the knowledge that the
average label length equals the
average edit length. • .../

for (p=O; p<councstore;p++)
(size{p) = (atoi(ltems_store[p][2J)·S)

+ (strlen(ltems_store[p][OJ)·S) + 21;
)
for (p=count_store; p<17; p++)
(
size[p) =0;

)
sec30lumn[O) = FALSE;
for (p=1; p<count_store;p++)
(if «sec_column[p-I) = FALSE) &&
(size[p-I) < 265) && (size[p) < 265»
sec30lumn[p) = TRUE;
else
sec_column[p) = FALSE;

}
for (p=count_store; p<I7; p++)
(
sec_column[p) = FALSE;

)
one_col =TRUE;
for (p=O; p<councstore; p++)
(
if (sec_column[p) = TRUE)

one_col = FALSE;
)
max_edit = 0;
for (p=O; p<count_store; p++)
(
if «sec_column[p) = FALSE)

&& (atoi(Items_store[p][2)) >
atoi(ltems_store[max_edit)[2))

max_edit = p;
)
max_1 =0;
max_2=0;
max_3 =0;
for (p=O; p<counCstore; P++)
if «sec30lumn[p) = FALSE) &&
(sec_column[p+I) = TRUE) &&
(size[p) > max_I»

max_1 = size[p);
else if «sec30Iumn[p) = FALSE) &&
(sec_column[p+I) = FALSE) &&
(size[p) >max_3»
max_3 = size[p);
else if «sec_column[p) = TRUE) &&
(size[p) > max_2»

max_2 = size[p);
if «max_3 + 20) > (max_1 + max_2 + 30»

row_size = max_3 + 20;
else row_size = max_1 +max_2 + 30;
if (row_size < 154)

offset = (154 - row_size)l2;

Figure 6.1. Continued.

www.manaraa.com

Programming Tools

else offset =0;
y_position =8;
num_lines =0;
for (p=O; p< councstore;p++)
{
if «sec_column[pl = FALSE) &&

(sec_column[p+ II = TRUE»
(
Static[p) =new TStatic(this, -I,
Items_store[p][OI, 10 + offset,
y_position,
strlen(Items_store[p][0])*8 +8,
19,21);

Edit[p) =new TEdit(this, BASE_EDIT + p,
temp[p), (max_I + 10)
(atoi(Items_store[p][2])*8) - 8 +
offset, y_position,
atoi(Items_store[p][2))*8 + 8,
19,33, FALSE);

}
else if «sec30Iumn[p) = FALSE) &&
(sec30Iumn[p+I) = FALSE»

(
if (size[p) <= max_I)
x_position =
(max_I + 10)
(atoi(Items_store[p][2))*8) - 8;

else if «one301 = TRUE) &&
(strlen(Items_store[p)[O)) <=
strlen(Items_store[max_edit)[O))

x_position = row_size
(atoi(Items_store[max_edit)[2))*8) - 18;

else
x_position =row_size
(atoi(Items_store[p)[2))*8) - 18;

Static[p) =new TStatic(this, -I,
Items_store[p)[O), 10 + offset,
y-position, strlen(Items_store[p)[0))*8
+8, 19,21);

Edit[p) =new TEdit(this, BASE_EDIT + p,
temp[p), x-POsition + offset, y-POsition.
atoi(Items_store[p)[2])*8 + 8, 19.33.
FALSE);

Y-position =y_position + 22;
num_lines++;
}
else if (sec_column[p) = TRUE)
(
Static[p) =new TStatic(this, -I,
Items_store[p][O), max_I + 20 + offset.
y-position. strlen(Items_store[p)[0))*8
+ 8.19, 2\);

Edit[p) =new TEdit(this. BASE_EDIT + p,
temp[p). row_size
(atoi(Items_store[p)[2)*8)
- 18 + offset, y_position,
atoi(Items_store[p)[2])*8 + 8,19,
33, FALSE);

Y-position =y-position + 22;
num_lines++;
}
}

167

if(row_size < 154) width =154;
else width =row size;
height =(num_li~es * 22) + 76;
new TButton(this, lOOK, "Ok", 0,
height - 60, widthl2. 30, TRUE);

new TButton(this, ID_BUTTON4, "Cancel",
widthl2, height -60, widthl2, 30, FALSE);

/**** This selS ATitie to the caption of the
dialog box. It is predefined. ****/

TDialog::SetCaption(ATille);
I

/**** The function Ok is excuted when the
user presses OK in the Form
window. In a for loop each edit window
is looked at. and if a change
is made. it is checked for validity and
then stored. If it is an
value, an error message is popped and the
window is closed. If
change is valid, it is recorded and the
window is closed after
looking at all the edit fields in the window.
••**/

void TForm2Window::Ok(RTMessage Msg)
(
char TheText[33);
char new_temp[33);
for (int i=O; kcouncstore; i++)
[

/**** This gelS the text from the
specified edit window. ****/

Edit[i)->GetText(TheText. sizeof(TheText»;
/**** The next batch of lines copy
the gotten text into the dataj
member array. ****/

if (!strcmp(Items_store[i)[3), TheText) &&
!stremp(ltems_store[i)[4)." "»
(strepy(ltems_store[i)[4)," ");
}

else if (!stremp(Items_store[i)[4). TheText»
(strepy(ltems_store[i)[3),
Items_store[i)[4]);

strcpy(Items_store[i)[4)," ");
}

else
[if (is_value(Items_store[i][I),

TheText»
{ if (!strcmp(ltems_store[i)[4)." "»
strcpy(Items_store[i)[4), TheText);

else
(strcpy(Items_store[i)[3),

Items_store[i)[4]);
strcpy(Items_store[i)[41, TheText);

}
I
else
{ MessageBox(HWindow, "You have entered

Figure 6.1. Continued.

www.manaraa.com

168

a bad items value.Oress OK to
cancel application.". "ERROR!!".
MB_OK IMB_ICONHAND);

Fonns_return =0;
CloseWindowO;
return;
}
}

I
for (i=O; i<count_store; i++)
(if (strlen{Items_store[i)[3)) >

atoi{Items_store[i][2]»
strcpy{new_temp. Items_store[i)[3));
for (intj=O; j<atoi{Items_store[i)[2));
j++)

Items_store[i)[3][j] =
new_temp[strlen{new_temp)
atoi{Items_store[i)[2)) + j];

Items_store[i][3][atoi{Items_store[i](2)]. '.

I
}
for (i=O; i<count_store; i++)
(if (strlen{Items_store[i)[4)) >

atoi{Items_store(i][2]»
strcpy{new_temp.Items_store[i)[4));
fQr{int j=O; j<atoi{Items_store[i)[2));
j++)
Items_store[i)[4][j] =
new_temp[strlen{new_temp)
- atoi{Items_store[i)[2)) + j];

Items_store[i][4][atoi{ltems_store[i](2))]. '.

I
}

for (i=O; i<count_store; i++)
(strcpy{Forms_transfer[i)[O].

Items_store[i)[O));
strcpy{Fonnuransfer[i)[I).

Items_store[i)[I));
strcpy{Fonns_transfer[i][2].

Items_store(i)[2));
strcpy{Fonns_transfer(i][3].

Items_store[i](3));
strepy{Forms_transfer[i][4].

Items_store[i)[4));
I
Forms_return =I;
TDialog: :Ok{Msg);
}

/**** If CANCEL is pressed this function
is executed. It merely closes the window.
****/

Chapter 6

/**** After the constructor this function.
SetupWindow is executed. It
performs the usual dialog box setup
and then resizes the window to
the position. height. and width determined
in the constructor.
MoveWindow takes as arguments. the handle
of the window to resize.
the new x coordinate. y coordinate. width
and height. ****/

void TFonn2Window::SetupWindowO
(
TDialog::SetupWindowO;
MoveWindow{this->HWindow.
317 - width/2. 250 - heightl2.
width+IO. height. TRUE);
HANDLE hEditFont;
HANDLE hStaticFont;
LOGFONT LogFont;

/**** This is the font for the edit boxes
in the dialog box. A fixed
width font is used to insure control
over number of characters in
view in the edit box. ****/

memset{&LogFont. O. sizeof{LOGFONT»;
LogFont.lfHeight =10;
LogFont.lfWidth =10;
LogFont.lfPitchAndFamily =FF_MODERN;
Istrcpy{LogFont.lfFaceName. "Courier 10");
hEditFont =CreateFontIndirect{&LogFont);
/**** This is the font for the label in the

dialog box. The only difference
is that there is some extra weight put
on it for emphasis. ****/

memset{&LogFont. O. sizeof{LOGFONT»;
LogFont.lfHeight =10;
LogFont.lfWidth =10;
LogFont.lfWeight =200;
LogFont.lfPitchAndFamily =FF_MODERN;
Istrcpy{LogFont.lfFaceName. "Courier 10");
hStaticFont =CreateFontIndirect{&LogFont);
for (int i=O; i<count_store; i++)
SendMessage{Edit[i]->HWindow. WM_SETFONT.
hEditFont. TRUE);

for (i=O; i<councstore; i++)
SendMessage{Static[i]->HWindow. WM_SETFONT.
hStaticFont. TRUE);

}
void TForm2Window: :HandleBullon2Msg{RTMessage)
(/**** This is the class definition for the
Forms_return =0; third window type. exactly like
CloseWindowO; the TForm2Window class with the exception

I of having a third bullon
labeled ESCAPE which when pressed returns

Figure 6.1. Continued.

www.manaraa.com

Programming Tools

a -I. It gets executed
when the Escape function is used. ****/

class TForm3Window : public TDialog
(
public:
char EItems_store[16][5][33];
int Ecount_store;

/**** EEdit[16] is an array of pointers
to TEdit, an ObjectWindows class
that sets up an edit box. ****/

PTEdit EEdit[16];

/**** EStatic[16] is an array of pointers
to TStatic. and ObjectWindows
class that displays text on the screen,
text that is not modified
by the user. This is used for the labels
of each of the fields. ****/

PTStatic EStatic[16];

/**** Height and width refer to the Forms
window. ****/

int Eheight, Ewidth;

/**** This is the constructor for the
TForm3Window class. It takes as
arguments, the parent window, the name,
the passed array, and
the number of items, count.
In addition it takes the caption string,
ATitie. ****/

TForm3Window(PTWindowsObject AParent,
LPSTR name, LPSTR ATitle,
char Items_input[16][5][33].
int counUnput);

/**** This is an overloaded function. It is
defined in TDialog and redefined
here. It is executed right after the
constructor of the
class is invoked. ****/

virtual void SetupWindowO;

/**** The function Ok is also an overloaded
operator which is redefined
in this derived class. It gets executed
when the OK button of the
dialog box is pressed. ****/

virtual void Ok(RTMessage Msg)
=[ID_FIRST + IDOK];

/**** The function HandieButton2Msg gets
executed when the CANCEL button
is pressed. ****/

169

virtual void Cancel(RTMessage Msg)
=[ID_FIRST + ID~ANCEL1;

/**** The function HandieButton3Msg gets
executed when the ESCAPE button
is pressed. ****/

virtual void HandleButton3Msg(RTMessage Msg)
=[ID_FIRST + ID_BUTION4];
private:

/**** These are private functions of the
class and check for integer,
string and float values and using
these check for valid values. ****/

BOOL is_int(char temp[33]);
BOOL is_f1oat(char temp[33]);
BOOL is_string(char temp[33]);
BOOL is_value(char item[33], char temp[33]);
};

/**** The function is_int checks a
string to see whether it is
an integer. ****/

BOOL TForm3Window::is_int(char temp[33])
(
if (!strcmp(temp. " "» return TRUE;
if (!isdigit(temp[OJ)) return FALSE;
for(int i=O; kstrlen(temp); i++)
if (!isdigit(temp[iJ)) return FALSE;
return TRUE;
}

/**** The function is_float checks whether
a string qualifies for float. ****/

BOOL TForm3Window::is_f1oat(char temp[33])
{
if (!strcmp(temp," "» return TRUE;
BOOL dec =FALSE;
for(int i=O; i<strlen(temp); i++)
{ if (!isdigit(temp[i]) && !«temp[i] = '.') && (dec = FALSE)))
return FALSE;
if (temp[i] = '.') dec = TRUE;
}
return TRUE;
}

/**** The function is_string checks to see
if argument is a valid string. ****/

BOOL TForm3Window::is_string(char temp[33])
(
if (!strcmp(temp, " "» return TRUE;
if (isalpha(temp[OJ))
(for(int i=O; kstrlen(temp); i++)
if (!isalpha(temp[i]) &&
!isdigit(temp[i]) &&
!ispunct(temp[iJ))
return FALSE;

Figure 6.1. Continued.

www.manaraa.com

170 Chapter 6

return TRUE;
}
else
return FALSE;

/.... The function is value takes two
argumen!s. the first being the type
and the second being the input value.
If the type specified is
consistent with the value the function
returns true. else returns false.••••/

BOOL TForm3Window::is_value(char item[33}.
char temp(33))

Items_input[i)[3));
if ('strcmp(Items_input[i)[4]......))
strcpy(EItems_store[i)[4J." ");
else
strcpy(EItems_store[i)[4].

ItemUnput[i)[4));

/•••• EItems_store now have the passed
array. If the wan!ed length is more
than 32. it cuts to 32. • •••/

for (in! h=O; h<Ecount_store; h++)
if «atoi(EItems_store[h)[2])) > 32)
strcpy(EItems_store[h)[2]. "32");

/•••• The array temp is what will be shown
in the edit boxes in
the Form window. If there's no new
value. we take the old
value. else we take the new value...../

for (p=O; p<Ecoun!_store;p++)
size[p] = (atoi(EItems_store[p)[2))·g)
+ (strlen(EItems_store[p)[O))·g) + 21;

for (p=Ecouncstore; p<17; p++)
size[p] =0;
sec_column[O] = FALSE;
fot (p=I; p<Ecouncstore;p++)
if «sec_column[p-l] = FALSE) &&
(size[p-I] < 265) && (size[p] < 265))
sec_column[p] = TRUE;
else
sec301umn[p] = FALSE;

for (p=Ecount_store; p<17; p++)
sec30lumn[p] = FALSE;
one301 =TRUE;
for (p=O; p<Ecouncstore; p++)
if (sec30Iumn[p] = TRUE) one301 = FALSE;
max edit =0'
for (p=O; p<Ecount_store; p++)
if «sec30Iumn[p] = FALSE) &&
(atoi(EItems_store[p)[2)) >
atoi(Eltems_store[max_edit][2))))

/•••• The rest of the code determines the
width. height. and the
position of the Form window and also
of the edit boxes and
static labels in the window.
This implements the new placing scheme
where position of all
items is decided before actually placing.
If there is only one
column. then edit fields are aligned left,
else they are aligned right. ••••,

/.... Copies passed array into its own
data member EItems_store.••••/

/•••• Copies passed int into its own
data member Ecount_store...../

for (int i=O; i<Ecouncstore; i++)
(strcpy(EItems_store[i] [0],

Items_input[i][O]);
strcpy(EItems_store[i)[I].

Items_input[i)[I));
strcpy(EItems_store[i] [2],

Items_input[i)[2]);
if (!strcmp(Items_input[i)[3]......))
strcpy(EItems_store[i)[3]." ..);
else
strcpy\'EItems_store[i][3].

Ecouncstore = counUnput;
char temp(16)[33];

{
if (!strcmp(item. "int"»
if (is_int(temp)) return TRUE;
if (!strcmp(item, "lIoat"))
if (is_IIoat(temp» return TRUE;
if (!strcmp(item, "string"))
if (is_string(temp)) return TRUE;
return FALSE;
}

{
int use_len;
int num_lines. x_position. y_position;
in! size[17];
BOOL sec30lumn[17];
BOOL one_col;
int max_edit;
int max_I. max_2. max_3;
int row_size;
Ewidth=O;
Eheight=O;
int offset;

for (int p=O; p<Ecouncstore; p++)
if (strcmp(EItems_store[p)[4]." ..))
strcpy(temp[p]. EItems_store[p)[4));

TForm3Window: :TForm3Window(PTWindowsObject~nt.
LPSTR name. LPSTR ATitie. strcpy(temp[p]. EItems_store[p)[3));
char Items_input[16][5][33]. int counUnput)
: TDialog(AParent, name)

Figure 6,1, Continued.

www.manaraa.com

Programming Tools

max_edit = p;
max_I =0;
max 2 =0;
max-3 =0;
for (p=O; p<Ecounl_store; p++)
if ((sec_column[p) = FALSE) &&
(sec_column[p+ I] = TRUE) &&
(size[p) > max_I)
max_I = size[p);
else if ((sec_column[p] = FALSE) &&

(sec30Iumn[p+l) = FALSE) &&
(size[p) > max_3»

max_3 = size[pl;
else if ((sec_column[p] = TRUE) &&

(size[p] > max_2»
max_2 = size[p);

if ((max_3 + 20) > (max_I + max_2 + 30»
row_size = max_3 + 20;

else row_size = max_I + max_2 + 30;
if (row_size < 184)
offset = (184 - row_size)/2;

else offset = 0;
y_position = 8;
num_lines = 0;
for (p=O; p< Ecounl_store;p++)
(
if ((sec30Iumn[p) = FALSE) &&
(sec_column[p+ I) = TRUE»

(
EStatic[p] = new TStatic(this. -I.
EItems_store[p](0), 10 + offset,
y_position. strlen(EItems_store[p][0])*8
+8.19.21);

EEdit[p) = new TEdit(this. BASE_EDIT + p.
temp[p). (max_I + 10)
(atoi(EItems_store[p][2])*8) - 8 +
offset, y_position.
atoi(EItems_store[p][2])*8 + 8.
19.33. FALSE);

I
else if (sec30Iumn[p) = FALSE) &&

(sec_column[p+ I] = FALSE»
{
if «p = (EcounUtore -I» &&
(size[p) < max_I»
x-POsition = (max_I + 10)

toi(EItems_store[p][2))*8) - 8;
else if «one301 = TRUE) &&

(strlen(EItems_store[p)[O)) <
strlen(EItems_store[max_edit)[O))

x_position = row_size
(atoi(EItems_store[max_edit][2))*8) - 18;

else
x_position = row_size
(atoi(EItems_store[p)[2))*8) - 18;

EStatic[p) = new TStatic(this, -I.
EItems_store[p][O). 10 + offset.
y_position. strlen(EItems_store[p](0))*8 +8.
19.21);

EEdit[p) = new TEdit(this. BASE_EDIT + p.
temp[p]. x_position + offset. y-POsition.
atoi(EItems_store[p)[2))*8 + 8. 19.

171

33. FALSE);
y_position = y_position + 22;
num_lines++;
}
else if (sec_column[p] = TRUE)
(
EStatic[p] = new TStatic(this. -I.
EItems_store[p](0). max_I + 20 + offset.
y_position. strlen(EItems_store[p][O))*8 + 8.
19.21);

EEdit[p) = new TEdit(this. BASE_EDIT + p. lemp[pl.
row_size - (atoi(EItems_store[p][2])*8) - 18 i
+ offset. y_position.
atoi(EItems_store[p][2])*8 + 8. 19.33. FALSE);

y-POsition = y_position + 22;
num_lines++;
}
}

if (row_size < 184) Ewidth = 184;
else Ewidth = row_size;
Eheight = (num_lines * 22) + 76;

new TButton(this. lOOK. "Ok". O. Eheight - 60.
Ewidthl3. 30. TRUE);

new TButton(this. IDCANCEL. "Cancel". Ewidthl3.
Eheighl -60. Ewidthl3. 30. FALSE);

1**** This is the third button. the Escape button
which when pressed returns -I *****1

new TButton(this, IO_BUTfON4. "Escape". 2*Ewidthl3.
Eheight -60. Ewidthl3. 30. FALSE);

1****Makes ATitle the caption of the
dialog box. ****1

TDialog::SetCaption(ATille);
I

void TForm3Window::Ok(RTMessage Msg)
(
char TheText(33);
char new_temp[33];
for (int i=O; kEcount_store; i++)
(

1**** This gets the text from the specified
edit window. ****1

EEdit[i)->GetText(TheText. sizeof(TheText»;

1**** The next batch of lines copy the
gotten text into the data
member array. ****1

if (!strcmp(EItems_store[i)[3). TheText) &&
!stremp(EItems_store[i)[4)." "»
strepy(EItems_store[i)[4)." ");

else if (!stremp(EItems_store[i)[4). TheText»
(strcpy(EItems_store[i)[3). .

EItems_store[i)[4]);
strcpy(EItems_store[i)[4)." ");

Figure 6.1. Continued.

www.manaraa.com

172 Chapter 6

I
else
(if (is_value(EItems_store[i)[I]. TheText»
if (!strcmp(EItems_store[i][4)." "»
strcpy(EItems_store[i)[4). TheText);

else
{
strcpy(EItems_store[i)[3).

EItems_store[i)[4));
strcpy(Eltems_store[i)[4). TheText);

void TForm3Window::Cancel(RTMessage Msg)
(
TDialog: :Cancel(Msg);
}

1**** This is the function for the new
button in the Escape window.
It imitates cancel except that
it returns a -I. ****1

memset(&ELogFont. O. sizeof(LOGFONT»;
ELogFont.lfHeight =10;
ELogFont.lfWidth =10;
ELogFont.lfWeight =200;
ELogFont.lfPitchAndFamily =FF_MODERN;
Istrcpy(ELogFont.lfFaceName. "Courier 10");
hEStaticFont = CreateFontIndirect(&ELogFont);

memset(&ELogFont. O. sizeof(LOGFONT»;
ELogFont.lfHeight =10;
ELogFont.lfWidth =10;
ELogFont.lfPitchAndFamily =FF_MODERN;
Istrcpy(ELogFont.lfFaceName. "Courier 10");
hEEditFont =CreateFontIndirect(&ELogFont);
1**** This is the font for the labels.

again Courier. The only difference
is that there is a little extra weight
put on it. ****1

1**** This is the font for the edit fields.
It is a fixed width Courier
with width of 10. ****1

1****.MoveWindow takes as arguments.
the handle of the window to resize.
the new x coordinate. y coordinate.
width and height. ****1

void TForm3Window::SetupWindowO
(
TDialog: :SetupWindowO;
MoveWindow(this->HWindow.
317 - Ewidth/2. 250 - Eheighll2.
Ewidth+lO. Eheight. TRUE);
HANDLE hEEditFont;
HANDLE hEStaticFont;
LOGFONT ELogFont;

I void TForm3Window::HandleButton3Msg(RTMessage)
else {
MessageBox(HWindow. FormsJeturn =0;
"You have entered a bad items CloseWindow(ID_BUTTON4);
value.Oress OK to cancel application.". I
"ERROR!!". MB_OK IMB_ICONHAND);

Forms_return =0; 1**** After the constructor this function.
CloseWindowO; SetupWindow is executed. It
return; performs the usual dialog box setup a

I nd then resizes the window to
I the position. height and width

determined in the constructor. ****1

1**** IfCANCEL is pressed this function
is executed. It merely closes
window. ****1

}
for (i=O; i<Ecouncstore; i++)
{ if (strlen(EItems_store[i][3]) >

atoi(EItems_store[i)[2)))
strcpy(new_temp. Eitems_store[i)[3]);
for (int j=O; j<atoi(EItems_store[i)[2]);
j++)
Eitems_store[i)[3)1il =
new_temp[strlen(new_temp)
atoi(Eltems_store[i)[2)) + j);

EIte~~_store[i)[3)[atoi(Eltems_store[i)[2)1

I
I
for (i=O; kEcouncstore; i++)
if (strlen(EItems_store[i][4]) >
atoi(EItems_store[i)[2))
strcpy(new_temp. EItems_store[i)[4));
for(int j=O; j<atoi(Eltems_store[i)[2)); j++)
Eitems_store[i)[4)1il =
new_temp[strlen(new_temp)
atoi(EItems_store[i)[2)) + j);

Eitems_store[i)[4)[atoi(EItems_store[i)[2)). '.

for (i=O; kEcount_store; i++)
(strcpy(Forms_transfer[i)[O). Eitems_store[i)[O));
strcpy(Forms_transfer[i)[I). Eltems_store[i)[I));
strcpy(Forms_transfer[i)[2). Eltems_store[i) [2]);
strcpy(Forms_transfer[i) (3). Eitems_store[i) [3]);
strcpy(Forms_transfer[i) (4). Eltems_store[i) (4));
}
Forms_return =I;
TDialog: :Ok(Msg);

I

Figure 6.1. Continued.

www.manaraa.com

Programming Tools 173

for (int i=O; kEcouncstore; i++) (
SendMessage(EEdit[i)->HWindow. WM_SETFONlDisableAutoCreate();

hEEditFont. TRUE);
/•••• Creates an instance ofTListBox with

for (i=O; i<Ecouncstore; i++) the position of the listbox
SendMessage(EStatic[i)->HWindow. WM_SETFONT. determined by the last four parameters

hEStaticFont. TRUE); passed to the new statement. ••••/

/•••• This is the definition of a class to
represent the Choices window
that is opened when the Choices function is
called.••••/

ListBox =new TListBox(this. ID_LISTBOX.
20. 20. 180. 80);

/•••• This basically says that do not put
into alphabetical order. • •••/

_CLASSDEF (TFormWindow)
class TFormWindow : public TDialog
(
public:
char Items_stored[32J(33);
int councstored;

/•••• Declaration of ListBox as a pointer
to class TListBox. and ObjectWindows
class that builds a list box.••••/

ListBox->Attr.Style &= 'LBS_SORT;

/•••• Creating instances of two buttons.
Index and Cancel. ••••/

new TButton(this. IDOK. "Index". O. 142.
150. 30. TRUE);

new TButton(this. ID_BUTTON2. "Cancel".
150. 142. 150.30. FALSE);

count_stored =count_input;
/•••• Copies passed array into its

own data member. • •••/

/•••• This function gets executed-right after
the constructor and sets
up the dialog box with the list box and
adds the items in the passed
array into the listbox. Then it positions
the window using the
MoveWindow function .••••/

for (int i=O; i<councstored; i++)
{ strcpy(Items_stored[i). Items_input[i));}
TDialog::SetCaption(ATitle);
}

void TFormWindow::SetupWindowO
(
TDialog: :SetupWindowO;
ListBox->ClearListO;
for (int i=O; kcounl_stored; i++)
(ListBox->AddString(Items_stored[i));}
MoveWindow(this->HWindow. 100. 100.300.

200. TRUE);
}
/•••• This function gets executed when the
list box item is double clicked
and basically takes the item. finds
the items index in the list.
and places it in Choices_return and
closes the window.••••/

/•••• This function handles pressing the
CANCEL button on the Choices window.••••/

/•••• This function handles pressing the
INDEX button on the Choices window.••••/

virtual void HandleButton2Msg(RTMessage Msg)
=[ID_FIRST + ID_BUTTON2j;
};
/•• Constructor to the class TFormWindow ••/ void TFormWindow:: HandleListMsg(RTMessage Msg)
TFormWindow: :TFormWindow(PTWindowsObject ;\\parent.
LPSTR name. LPSTR ATitle. char my_string[30j;
char ItemLinput[32J(33). int counUnput) : if (Msg.LP.Hi = LBN_DBLCLK)
TDialog(AParent. name) {

virtual void Ok(RTMessage Msg)
=[ID_FIRST + IDOK);

virtual void HandleListMsg(RTMessage Msg)
=[ID]IRST + ID_LISTBOX);

virtual void SetupWindowO;

/•••• This function handles double clicks on
an item in the listbox. • •••/

TFormWindow(PTWindowsObject AParent.
LPSTR name. LPSTR ATitle.
char Items_input[32J(33).
int counUnput);

/•••• This function is executed right after
the constructor to the class.••••/

/•••• Constructor to the class. takes parent.
name. passed array. and int count. ••••/

PTListBox ListBox;

Figure 6.1. Continued.

www.manaraa.com

174 Chapter 6

itoa(ListBox->GetSelIndexO + I, my_string,
10);

MessageBox(HWindow, my_string,
"Index Number =", MB_OK);

Choices_return =ListBox->GetSelIndexO + I;
TDialog: :Ok(Msg);
}
}

,.... This function gets executed when
Store IChoices is clicked...../

virtual void Choices_store(RTMessage Msg)
=[CM_FIRST + CM_CHOICES];

,.... This function gets executed when
Store IFonns is clicked.••••/

,.... New function to store the
Escape array.••••,

virtual void Escape_store(RTMessage Msg)
=[CM_FIRST + CM_ESCAPE];

virtual void Fonns_display(RTMessage Msg)
=[CM_FIRST + CM_DISFORMS];

virtual void Fonns_store(RTMessage Msg)
=[CM_FIRST + CM_FORMS];

void TFonnWindow:: Ok(RTMessage Msg)
I
char my_string[30];
itoa(ListBox->GetSelIndexO + I, my_string, 10);
MessageBox(HWindow, my_string, "Index Number ="~••• This function gets executed when

MB_OK); Display IFonns is clicked.••••,
ChoicesJetum =ListBox->GetSelIndexO + I;
TDialog: :Ok(Msg);

I

, •••• If Index is pressed the selected item in
the list has its index
value placed in Choices_return and the
window is closed. • ...,

/•••• If Cancel is pressed the window is merely
closed.••••/

/•••• This function gets executed when
Display IChoices is clicked.••••,

/.... New function to display the
Escape window.....,

void TFonnWindow::HandleBunon2Msg(RTMessage)virtual void Choices_display(RTMessage Msg)
(=[CM_FIRST + CM_DISCHOICES];
Choices_return = 0;
CloseWindowO;
}

/.... Class TMyWindow is the main window of
the application. It is very
important to understand this class and
its member functions. ..••,

_CLASSDEF(TMyWindow)
class TMyWindow : public TWindow
(
public:
char Items_Fonns[16][5][33];
char Items_Choices[32][33];
char Items_Escape[16][5][33];
BOOL Choices_filled;
BOOL Fonns_filled;
BOOL Escape_filled;
int Choices30unt;
int Fonns_count;
int Escape30unt;

/•••• Constructor to the class.••••/

virtual void Escape_display(RTMessage Msg)
= [CM_FIRST +CM_DISESCAPE];

,•••• This is the function Choices, the
main part of the program...../

virtual int Choices(char items[32J[33],
int count, char box_name[20]);

,•••• This is the function Fonns, the
main part of the program. • •••,

virtual int Fonns(char items[16J[5][33],
int count, char box_name[20]);

virtual int Escape(char items[16J[5J[33],
int count, char box_name[20]);

/.... This function gets executed when
Help IHelp is clicked. • •••/

virtual void Help(RTMessage Msg)
TMyWindow(PTWindowsObject AParent, LPSTR Al'itl~CFIRST + CM_HELP];

private:
/•••• The function CanCloseO is checks to

see if it returns TRUE
before the actual closing action
can be executed.••••/

virtual BOOL CanCloseO;

/•••• These are private functions and are
quite self-explanatory.••••/

BOOL is_name(char temp[33]);
BOOL is_type(char temp[33]);

Figure 6.1. Continued.

www.manaraa.com

Programming Tools 175

for(int i=O; kstrlen(temp); i++)
{ if (!isdigit(temp[i))) return FALSE;
}
return TRUE;
}

BOOL TMyWindow::is_string(char temp(33))
(
if (!strcmp(temp, "*"» return TRUE;
if (isalpha(temp[O)))
(for(int i=O; i<strlen(temp); i++)
if (!isalpha(temp[i)) && !isdigit(temp[i))

&& !ispunct(temp[i)))
return FALSE;

return TRUE;
}
else
return FALSE;

/**** Checks to see if argument is string. ****/

/**** Checks to see if argument is floating ****/
/**** This is the constructor of the main

window. It assigns the menu
defined in the resource file to this
window. It also sets initial
variables. ****/

BOOL is_len(char temp(33));
BOOL is_value(char item[33], char temp[33));
BOOL is_f1oat(char temp(33));
BOOL is_int(char temp(33));
BOOL is_string(char temp(33));
};

BOOL TMyWindow::CanCloseO
(
char ii[16)[5)[33];
for (int i=O; kI6;i++)
(

BOOL TMyWindow::is_f1oat(char temp(33))
(
BOOL dec =FALSE;
if (!strcmp(temp, "*"» return TRUE;
for(int i=O; i<strlen(temp); i++)

TMyWindow: :TMyWindow(P1WindowsObject AParellljf (!isdigit(temp[i)) &&
LPSTR ATitle) !«temp[i] = '.') &&

: TWindow(AParent, ATitle) (dec = FALSE)))
(return FALSE;
AssignMenu("COMMANDS"); if (temp[i] = '.') dec =TRUE;
Choices_filled =FALSE; }
Forms_filled =FALSE; return TRUE;
Escape_filled =FALSE; }
Choices30unt =0;
Forms_count =0;
Escape_count =0;
}
/**** This is an overloaded function of class

TWindowon which TMyWindow
is based. Before exiting, the user is
now asked if he wants to
leave. If yes is clicked, the application
is closed, else left open. ****/

BOOL TMyWindow::is_name(char temp[33))
(if (isalpha(temp[O)) && (strlen(temp) = I»
return TRUE;
if (isalpha(temp[O)))
(for(int i=O; i<strlen(temp); i++)
if (!isalpha(temp[i)) && !isdigit(temp[i))

&& !ispunct(temp[i)))
return FALSE;

return TRUE;
}
else
return FALSE;

/**** Checks to see if argument is a valid name. ****/
ii[i)[O)[O] =' ';
strcat(ii[i)[O],

"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaall
);

ii[i)[I)[O] =' ';
strcat(ii[i)[I],"string");
ii[iJ(2J(0] =' ';
strcat(ii[i][2],"32");
ii[iJ(3J(0] =' ';
strcat(iili][3],"*");
ii[iJ(4)[0] =' ';
strcat(ii[iJ(4],"*");

I
Forms(ii,16,"yes");
return MessageBox(HWindow,
"Do you really want to exit?", "EXIT", }
MB_YESNO IMB_ICONQUESTION) = IDYES;

/**** Checks to see if argument is a valid type
(int, float, or string) ****/

/**** Checks to see if argument is integer. ****/

BOOL TMyWindow::is_int(char temp(33))
(
if (!strcmrftemp, "*"» return TRUE;
if (! isdigll\ temp[O))) return FALSE;

BOOL TMyWindow::is_type(char temp(33))
(
if (stremp(temp,"int") && strcmp(temp,"f1oat")

&& strcmp(temp,"string"»
return FALSE;

Figure 6.1. Continued.

www.manaraa.com

176

return TRUE;
I
/**** Checks to see whether argument is a
valid length. ****/

BOOL TMyWindow::is_len(char temp(33))
(
if (!isdigit(temp[O))) return FALSE;
for(int i=O; i<strlen(temp); i++)
if (!isdigit(temp[i))) return FALSE;
if (atoi(temp) = 0) return FALSE;
return TRUE;

I

/**** Checks to see if the second argument
is a valid value for the type
in the first argument. ****/

BOOL TMyWindow::is_value(char item(33),
char temp(33))

{
if (!strcmp(item, "int"»
if (is_int(temp» return TRUE;
if (!strcmp(item, "ftoat"»
if (is_ftoat(temp» return TRUE;
if (!strcmp(item, "string"»
if (is_string(temp» return TRUE;
return FALSE;

I

/**** This function opens up a standard input
dialog box and puts the
user input into a long string. Then
through the use of strtok
function the long string is tokenized
and placed in an array.
Finally a check is done to see the
validity of the input. If
this input is valid the boolean
Forms_filled is made true and a
message is diplayed saying the array
is stored. If the input has
some error in it. an error message is
popped and the array is not
stored, this Forms_filled is false. ****/

void TMyWindow::Forms_store(RTMessage)
{
int counter;
char InputText[IOOO);
char *p;
char temp(33);
intlen;
intlooper;
strcpy(InputText, " ");
if (GetApplicationO->ExecDialog
(new TInputDialog(this. "Command line:",
"Command line:", InputText,
sizeofInputText» = lOOK)
if (!strcmp(InputTexl, " "» return;
strcpy(Items_Forms[O)[O),

Chapter 6

strtok(lnputText. ", "»;
counter = I;
while «(p = strtok(NULL, ", "» != NULL)

&& (counter < 64»
{
strcpy(Items_Forms[(counter
(counter%4»/4][(counter%4)], p);

counter++;
I
if (counter%4 = 0) looper = counter/4;
else
{
looper = «counter - (counter%4»/4) + I;
MessageBox(HWindow. "Inv. # of Args",

"Not Stored", MB_OK);
Forms_filled = FALSE;
return;

I
for(int j=O; j<looper; j++)
{ if(!is_name(Items_Forms[j)[O)))
{
MessageBox(HWindow. "Invalid item name",

"Not Stored", MB_OK);
Forms_filled = FALSE;
return;

I
if(!is_type(Items_Forms[j)[I)))
{
MessageBox(HWindow, "Invalid item type".

"Not Stored", MB_OK);
Forms_filled = FALSE;
return;

I
if(!is_len(Items_Forms[j)[2)))
{
MessageBox(HWindow, "Invalid item length".

"Not Stored". MB_OK);
Forms_filled = FALSE;
return;

I
if(!is_value(Items_Forms[j) [I),

Items_Forms[j)[3)))
{
MessageBox(HWindow, "Invalid item value".

"Not Stored", MB_OK);
Forms_filled =FALSE;
return;

I
I
for (int i=O; i<looper; i++)
(
if (strlen(Items_Forms[i)[O)) > 32)
{
MessageBox(HWindow.
"Name cannot exceed 32",
"Not Stored". MB_OK);

Forms_filled =FALSE;
return;

I
if (strlen(Items_Forms[i)[3)) > 32)
(
MessageBox(HWindow.

Figure 6.1. Continued.

www.manaraa.com

Programming Tools

"Value cannot exceed 32".
"Not Stored", MB_OK);

Forms_filled = FALSE;
return;
}

I
for (i=O; klooper; i++)
{ if (strlen(Items_Forms[i][3]) >

atoi(Items_Forms[i)[2]»
strcpy(temp. Items_Forms[i)[3));
len = strlen(Items_Forms[i][3]);
for(int k=O;
k<atoi(Items_Forms[i][2)); k++)
Items_Forms[i][3)[k) =
temp[len
atoi(Items_Forms[i)[2]) + k);

Items_Forms[i)[3)
[atoi(Items_Forms[i)[2))] = •

I
)
for (i=O; i<looper; i++)
strcpy(Items_Forms[i)[4). "*");
Forms_filled = TRUE;
Fonns30unt = looper;
for (i=looper; kI6; i++)
(strcpy(Items_Forms[i)[O)." ");
strcpy(Items_Forms[i)[I]." ");
strcpy(Items_Forms[i)[2]." ");
strcpy(Items_Forms[i)[3]." ");
strcpy(Items_Forms[i)[4)." ");

)
MessageBox(HWindow. "Array stored",
"Message". MB_OK);

1**** This function opens up a standard input
dialog box and puts the
user input into a long string. Then
through the use of strtok
function the long string is tokenized
and placed in an array.
Finally a check is done to see the
validity of the input. If
this input is valid the boolean Escape_filled
is made true and a
message is diplayed saying the array is stored.
If the input has
some error in it. an error message is popped
and the array is not
stored. this Escape_filled is false. ****1

void TMyWindow::Escape_store(RTMessage)
(
int counter;
char InputText[IOOO);
char *p;
char temp[33);
int len;
int looper;
strcpy(InputText." ");
if (GetApplicationO->ExecDialog

177

(new TInputDialog(this, "Command line:".
"Command line:". InputText.
sizeof InputText)) = IDOK)
if (!strcmp(InputText." ")) return;
strcpy(Items_Escape[O][O].

strtok(InputText. ". "»;
counter = I;
while «(p = strtok(NULL. ". ")) != NULL)

&& (counter < 64))
(
strcpy(Items_Escape[(counter
(counter%4))/4][(counter%4)]. p);

counter++;
)
if (counter%4 = 0) looper = counter/4;
else
{
looper = «counter - (counter%4))/4) + I;
MessageBox(HWindow.
"Inv. # of Args". "Not Stored". MB_OK);
Escape_filled = FALSE;
return;

I
for(int j=O; j<looper; j++)
(if(!is_name(Items_Escape[j)[O)))

(
MessageBox(HWindow.
"Invalid item name".
"Not Stored". MB_OK);

Escape_filled = FALSE;
return;

)
if(!is_type(Items_Escape[j)[I)))
(
MessageBox(HWindow.
"Invalid item type".
"Not Stored". MB_OK);

Escape_filled = FALSE;
return;

)
if(!is_len(Items_Escape[j)[2))
{
MessageBox(HWindow.
"Invalid item length".
"Not Stored". MB_OK);

Escape_filled = FALSE;
return;

)
if (!is_value(Items_Escape[j][I).
Items_Escape[j][3)))

{
MessageBox(HWindow.
"Invalid item value".
"Not Stored". MB_OK);

Escape_filled = FALSE;
return;

)
I
for (int i=O; klooper; i++)
{
if (strlen(Items_Escape[i)[O)) > 32)
(

Figure 6.1. Continued.

www.manaraa.com

178 Chapter 6

void TMyWindow::Forms_display(RTMessage)
(
int b;
if (Forms_filled)
b = Forms(Items_Forms,

Forms30unt, "Form Window Test");

void TMyWindow: :Choices_store(RTMessage)
{
int counter;
char InputText[200);
char *p;
slrcpy(lnputText," ");
if (GelApplication()->
ExecDialog(new TInpulDialog
(this, "Command line:". "Command line:".
InputText, sizeof InputText» = lOOK)
{ if (!slrcmp(InputText," "» return;
Slrcpy(llems_Choices[O).
slrtok(InputText, ", "»;

counter = I;
while«(p = slrtok(NULL. ", "» != NULL)

&& (counter < 32»
{
Slrcpy(llems_Choices[counter). p);
counter++;
}
for (int i=O; kcounter; i++)
{
if (!is_name(Items_Choices[i)))
{ MessageBox(HWindow.
"Invalid argument",
"Not Stored", MB_OK);

Choices_filled = FALSE;
return;

)
I
Choices_filled = TRUE;
Choices30unt = counter;
MessageBox(HWindow.
"Array stored.", "Message", MB_OK);

/**** This function displays the Escape window.
Il checks to see if the
array is filled. If it is, it called
the Escape function. else it
returns a message saying that the array
is not filled. ****/

else
MessageBox(HWindow,
"Array not filled.". "ERROR", MB_OK);

/**** This function displays the Forms window.
It checks to see if the
array is filled. If it is. it called
the Forms function, else it
returns a message saying that the array
is not filled. ****/

MessageBox(HWindow,
"Name cannot exceed 32",
"Not Stored", MB_OK);

Escape_filled = FALSE;
return;

I
if (slrlen(llems_Escape[iJ(3» > 32)
{
MessageBox(HWindow,
"Value cannot exceed 32",
"Not Stored", MB_OK);

Escape_filled = FALSE;
return;

)
)
for (i=O; i<looper; i++)
(if (strlen(llems_Escape[iJ(3» >

atoi(llems_Escape[i) [2»)
strepy(temp, llems_Escape[iJ(3»;
len = Slrlen(llems_Escape[iJ(3»;
for(int k=O;
k<atoi(ltems_Escape[iJ(2»; k++)
llems_Escape[iJ(3J(k) =
temp[len - atoi(ltems_Escape[iJ(2»
+k);

llems_Escape[iJ(3)
[atoi(llems_Escape[iJ(2))) =' '.

}
}
Escape_filled = TRUE;
Escape30unt = looper;
for (i=looper; k16; i++)
{ Slrcpy(llems_Escape[iJ(O), " ");
Slrcpy(llems_Escape[iJ(I)," ");
Slrcpy(ltems_Escape[iJ(2)," ");
slrcpy(Items_Escape[iJ(3)," ");
slrcpy(Items_Escape[iJ(4)," ");
}
for (i=O; i<looper; i++)
(
slrcpy(Items_Escape[iJ(4), "*");
}
MessageBox(HWindow.
"Array stored", "Message", MB_OK);

/**** This function's job is to store the
Choices array. Il opens up a
standard dialog box an places the user
input into a long siring.
Through the use of the slrtok function
the Slring is tokenized and
placed in an array. A validity check
is done. If the input is
valid, Choices _filled is made true
and a message is popped saying
the array is stored. If the input has
some sort of error, an error
message is popped and Choices_filled
is false. ****/

Figure 6.1. Continued.

www.manaraa.com

Programming Tools

void TMyWindow::Escape_display(RTMessage)
{
int b;
if (Escape_filled)
b =Escape(ltems_Escape.
Escape_count. "Escape Window Test");

else
MessageBox(HWindow.

"Array not filled.". "ERROR". MB_OK);

/**** This function displays the Choices
window. It checks to see if
the Chocies array is filled. If
it is. it calls the Choices function
else it returns a message saying that
the array is not filled. ****/

void TMyWindow: :Choices_display(RTMessage)
(
int b;
if (Choices_filled)
b =Choices(Items_Choices.

Choices_count. "TestTitle");
else
MessageBox(HWindow,
"Array not stored.". "ERROR". MB_OK);

/**** This the main Choices function.
It displays the Choices window
and if the user clicks Index.
returns the index of the selected
item. If Index is not pressed.
it return a simple O. ****/

int TMyWindow::Choices(char items[32][33).
int count. char box_name(20))

(
if (GetModuleO->ExecDialog
(new TFormWindow(this. "FORM I".
box_name. items. count» = lOOK)
{
MessageBox(HWindow.
"return is I". "Message". MB_OK);
return Choices_return;
)

else
return 0;

/**** This is the main Forms function.
It displays a Forms window and
if an OK is received from the window.
it copies from the global
transfer buffer to its own array.
This is to account for changes
to the fields in the form window.
IfOK is no received, a 0 is
returned. IfOK is received, a 1 is
returned. ****/

179

int TMyWindow::Forms(char items[16][5)[33).
int count. char box_name[20))
{
if(GetModuleO->ExecDialog
(new TForm2Window(this. "FORM2".
box_name. items. count» = lOOK)
(MessageBox(HWindow. "return is I".
"Message". MB_OK);
for(int i=O; i<count; i++)
{ if (!strcmp
(Forms_transfer[i)[4]." "»
strcpy(items[i)[4]. "*");
else
strcpy(items[i)[4].
Forms_transfer[i)[4));

if (!strcmp
(Forms_transfer[i)[3J, " "»

Slrcpy(items[i)[3]. "*");
else
strcpy(items[i)[3). Forms_lransfer[i)[3J);

)
return I;

)
else
return 0;

/**** This is the main Escape function.
It opens up a dialog box. a if OK
is pressed, returns I. If CANCEL
is pressed it returns O. If Escape
is pressed. it returns a -1. This
third button is the only difference
between the Form Wlndow and the
Escape Window. ****/

int TMyWindow::Escape(char items[16)[5)[33),
int count. char box_name(20))

switch(GetModuleO->ExecDialog
(new TForm3Window(this. "FORM3".
box_name, items. count))) [

case(lDOK):
MessageBox(HWindow,
"return is I". "Message". MB_OK);
for(int i=O; kcount; i++)
[if (!strcmp(Forms_transfer[i)[4)." "»
strcpy(items[i)[4). "*");
else
strcpy(items[i)[4).
FormS_lransfer[i)[4));

if (!slrcmp(Forms_transfer[i)[3). " "»
strcpy(items[i)[3). "*");
else
strcpy(items[i)[3).
Forms_transfer[i] (3));

)
return 1;

case(IDCANCEL):
MessageBox(HWindow, "ESCAPE".
" return is 0". MB_OK);

return 0;

Figure 6.1, Continued.

www.manaraa.com

180

REFERENCES

default:
MessageBox(HWindow, "ESCAPE".
"return is -I ", MB_OK);

return -I;
I

I

/•••• This is the help function. and makes
the help window on the screen.
The help window is defined in
hwind.cpp . • •••/

void TMyWindow::Help(RTMessage)
I
P1Window HelpWindow;
HelpWindow =new THelpWindow(this);
GetApplication()->MakeWindow(HelpWindow);
}

/•••• This function is necessary for all
applications and basically tells
what the main window is. In this
case our main window is TMyWindow
and thus we assign is as such.••••/

void TMyApp::InitMainWindowO
(
MainWindow =new TMyWindow(NULL, Name);
}

/•••• This is common to all applications.••••/

int PASCAL WinMain(HANDLE hInstance,
HANDLE hPrevInstance, LPSTR IpCmdLine,
int nCmdShow)

(
TMyApp MyApp("SAMPLE PROJECT",
hInstance, hPrevInstance, IpCmdLine, nCmdShow);
MyApp.RunO;
return MyApp.Status;
}

Figure 6.1. Continued.

Chapter 6

1. Microsoft Windows, User's Guide (Microsoft, 1990).
2. ObjectWindows, Programmer's Manual (Borland Int., 1991).
3. Scheiller, R. W., and Gettys, J. X window system, the complete reference to Xlib, X Protocol,

lCCCM, XLFD (Digital Press, 1992).
4. Nye, A. Xlib programming manual (O'Reilly, Sebastopol, CA., 1990).
5. Nye, A., and O'Reilly, T. X Toolkit intrinsics programming manual (O'Reilly, Sebastopol, CA.,
1990).

6. Heller, D. Motif programming manual (O'Reilly, Sebastopol, CA., 1990).
7. Sun Microsystems, Inc. OPEN LOOK graphical user interface application style guide (Addison
Wesley, Reading, MA, 1990).

8. Sun Microsystems, Inc. OPEN LOOK graphical user interface functional specification (Addison
Wesley, Reading, MA, 1990).

9. Stevens, W. R., UNIX network programming (Prentice-Hall, Englewood Cliffs, NJ, 1990).

www.manaraa.com

7

Declarative Programming

A program is declarative if it requires little specification about control; instead it
specifies as much as possible what to compute. The most ambitious objective of
declarative programming is to derive computations from requirements specifica
tions automatically in every domain. A more conservative goal of declarative
programming is to make programming a simple task so that only the key portion
of a program must be figured out by the programmer and most low-level details
can be completed by the programming system automatically. Such objectives
have been successfully accomplished in many well-defined domains. Chapter 7
first discusses a number of very high level programming languages that provide
the programmer with additional tools to simplify manipulations of complex data
structures (Sections 7.1-7.2). Section 7.3 discusses a logic programming lan
guage, PROLOG. Section 7.4 discusses the concept of declarative programming in
database systems-a well-defined yet powerful domain that covers a large num
ber of applications.

A logic programming language, such as PROLOG, is considered declarative
because a logic program is treated as a goal to be proved by a mechanical
theorem-proving process. Compared with first-order logic (see Section 3.1), logic
programming is more restrictive in terms of the notations allowed (e.g., the use of
negation is strictly restricted). This implies that the programmer sometimes has
to implement some search procedure explicitly. A logic programming language
may be considered a formal requirements specification language for simple prob
lems; however since it would require some specification of control for compli
cated problems, we discuss it here rather than in Chapter 3. Automatic program
ming for general domains is discussed in Chapter 8.

7.1. VERY HIGH LEVEL PROGRAMMING

Ideally the term declarative program refers to a program that says what is to
be accomplished by the program, rather than how it is to be accomplished.
Therefore a program is declarative if it is only a specification. Due to practical
constraints (see Chapter 8), declarative programs may also exist in the form of
very high level programs in a very high level programming language. A language

181

www.manaraa.com

182 Chapter 7

is a very high level programming language if it extends a high-level program
ming language with some additional constructs so that the user's intentions can
easily be expressed. An example of such languages is SETL, a language that
mainly extends ALGOL with the notion of sets and tuples (which are ordered
sets).l A set can be specified by enumeration (e.g., {l,2,3}) or by using a general
set former construction {x E slC(x)} [which constructs a subset from a set s with
those elements x in s satisfying the Boolean condition C(x)]). In SETL sets can be
manipulated by ordinary set-oriented operations, such as union, intersect, and
difference. SETL also allows quantified expressions to be written over sets, such
as 3 x E s!C(x) and Y x E slC(x), where s is a set and C(x) is a Boolean
expression.

Example 7.1. (Ref. 2) This example illustrates that with the additional
set-oriented constructs available in SETL, a program computing the
shortest path between two vertices in a graph can be expressed in a very
concise and readable form.

read (graph, cost, x,y); / / graph is a map from a
node to its successors

/ / cost is an integer map from two nodes
/ / x is the source
/ / y is the destination

prev := il; / / initialization
val :={};
val (x) := 0;
newnodes : = {x};
(while newnodes ! = il)
select n from newnodes;
(Ym E graph{n}) / / for each of its successors
newval : = val (n) + cost (n, m) ;
if val (m) =om or val (m) > newval then

/ / om is a special symbol
/ / that designates an undefined
/ / value
val(m) := newval;
prev (m) : = n;
if m ! = Y then
newnodes with: = m;
/ / add m to newnodes

end if;
end if;
end Y
end while;

www.manaraa.com

Declarative Programming

if val (y) = am then
print (ll y is not reachable from x") ;

else
path: = [y]; II build the path backwards
z : = y;
(while (z : = prev(z)) ! = am)
pathwith:=z;
end while;

II the following reverses the re
versed path

path := [path(#path + 1 -i):i := 1 ...
#path]; II # takes the cardinality

print (path) ;
end if;
end program MINPATH;

183

In addition to SETL, a number of other very high level programming lan
guages have been proposed. A partial list includes GIST,3 V,4 BAGL,5 and GAM
MA.6 An important issue related to almost all very high level languages is data
structure selection. For example in SETL, the notions of set and tuple are provided
without implementation. The choice of the most appropriate and efficient imple
mentation for sets and tuples in a program can be done automatically. For
example Ref. 2 proposes choosing to implement some base sets of a program as
hash tables, then implementing sets that can be derived from base sets from the
base tables automatically. Data flow analysis is proposed to determine base sets
for a program. Some other optimization ideas are reported in Ref. 7. The success
of very high level programming languages in some special domains are given in
Ref. 8.

7.2. OBJECT-ORIENTED DECLARATIVE PROGRAMMING

The concept of declarative programming is incorporated into object-ori
ented database programming languages in Ref. 9. A number of object-oriented
database systems extend c+ + with the concept of set and persistent object. In
the following we extend c+ + to include some high-level constructs that can be
used to access sets of objects. We assume that all objects are programming
objects (i.e., not persistent objects) and all sets are ordered.

Set Classes: Given a class of a, the class of all possible ordered sets that can
be derived from instances of a is declared as:

www.manaraa.com

/84

set:

Chapter 7

/ /methods

}

The following declaration defines a set a of class a:

set_of_a a;

Set Projection: Given a set or an object a of class a, the following notation
designates the projection of a on attributes A 1, ... , An:

aA l' ••• , An

Head and Tail: The function headO applied to an ordered set returns the first
element of the set; the function tailO returns the remainder of the set. The
symbol NIL designates the empty set.

Universal Quantifier: A variable in a logical expression can be universally
quantified by the quantifier:

(foraH (variable_id) in (set_id»)

Existential Quantifier: A variable in a logical expression can be existentially
quantified by the quantifier:

(exist (variable_id) in (set_id»)

Membership: The following function returns 1 if (variable_id) is an ele
ment of (ser-id):

(set_id):member (variable_id») ;

The following functions/statements can be used to access the elements in a

• (set_id): insert (variable_id») ;

• (set_id):delete (variable_id») ;

• (foreach (variable_id) in (set_id») statement;

Example 7.2. Assume the following declarations:

class rectangle {
public:
vertex a,b,c,d;
int intersect(rectangle r); /*test if two

rectangles intersect * /

www.manaraa.com

Declarative Programming

int size (); / /returns the size of a rectangle
void plot (); / /plot a rectangle
//others

};
class vertex {
public:
floatx,y;
//others

};
class block {
/ / attributes
void plot (); / /plot a block

};
class on_top {
public:
block top, bottom;
//others

};
class set_of_block { };
class set_of_on_top { };
class set_of_rectangle sri
set_of_block sb;
set_of_on_top sot;
set_of_rectangle sr;
op_top a;
rectangle s,t,u;

The following are some example statements that access objects
associatively:

/ *plot pairs of rectangles of sr which intersect
each other* /

(foreach t in sr)
(foreach u in sr)
if (t. intersect (u) == 1) {t .plot () ; u.plot ();

}
/ /plot the smallest rectangle in sr
(foreach t in sr)
if !((exist s in sr) (s.size() > t.size())

t.plot () ;

/85

www.manaraa.com

186 Chapter 7

/ /plot each block which does not support any other
block
(foreach b in sb)
if ! ((exist a in sot) (a.bottom == b)) b.plot ();

Object-oriented declarative programming, as briefly described in the pre-
ceding, may make a program less sensitive to changes, as Example 7.3 illustrates.

Example 7.3. Consider the simple scenario consisting of three surface
ships: one carrier and two cruisers. The three ships move from the base
to a battle zone. On the way and before the attack begins, each ship is
responsible for any threat detected, and any ship must clear the threat.
Once all ships reach the battle zone, they should attack the target togeth
er. The following c+ + program employs inheritance, function overrid
ing, and set-oriented constructs to implement this scenario:

class surface_ship {
coordinate position;
double speed;
double bearing;
set_of_weapon weapons;

void surface_ship (void) ;
int transit (float speed, set_of_segment

path) ;
virtual int at tack (target target) ;
virtual int clear_threat (threat threat);
virtual threat detect_threat (void) ; / * it re-

turns a threat if detected* /
/ / it returns NULL otherwise.

class carrier : surface_ship {
set_of_aircraft aircraft;

void carrier (void) ;
int attack (target target) ;
int clear_threat (threat threat);
threat detect_threat (void) ;
int launch_aircraft (. . ..);
int recover_aircraft (....);

}
class cruiser: surface_ship {
/ / cruiser specific attributes;

www.manaraa.com

Declarative Programming

void cruiser (void) ;
int attack (target target);
threat detect_threat (void) ;
int clear_threat (threat threat) ;
int launch_missile (....);

}
class target {. .}
class threat {. .}
void main()
{
int clock = 0; / / the global clock
threat threat; / / intended to be a variable
carrier carrier (....); /* create and initial-

ize carrier* /
cruiser cruiserl (...), cruiser2 (...);

/* create and initialize two
cruisers*/

surface_ship ship, shipl, ship2; / * intended to
be a variable* /
set_of_surface_ship task_force;
task_force. insert (carrier); / * create the task

force*/
task_force.insert(cruiserl);
task_force.insert(cruiser2);
while (exist ship in task_force) (ship. status

! = "arrived")
/ / as long as not all the ships have arrived

{
clock++ ;
(forall ship in task_force)
if (ship. status != "arrived")
{
ship. transit (....); / / move
if ((threat = = ship.detect_threat()) !=

NULL)
ship. clear_threat (threat) ;
/ / if a threat is detected by a ship
have that ship clear the threat with its

own way* /
}
}

187

www.manaraa.com

/88 Chapter 7

(forall ship in task_force) shipoattack_target
(target) ;

/ / attack the target
}

A c program can be written for the same purpose:

struct carrier {
coordinate position;
double speed;
double bearing;
weapon *weapons;
aircraft *aircraft;

}
int carrier_transit (carrier carrier, float

speed, segment *path) ;
int carrier_attack (carrier carrier,target

target) ;
int carrier_clear_ threat (carrier carrier,

threat threat) ;
struct threat carrier_detect_threat (void);
int carrier_launch_aircraft (0 0 0 0);
int carrier_recover_aircraft (0 0 0 0);
struct cruiser {
coordinate position;
double speed;
double bearing;
weapon *weapons;

}
int cruiser_transit (cruiser cruiser, float

speed, segment *path) ;
int cruiser_attack (cruiser cruiser, target

target);
int cruiser_clear_threat (cruiser cruiser,

threat threat) ;
struct threat cruiser_detect_threat (void) ;
int cruiser_launch_missile (0 0 0 0);
struct target {o o}
struct threat {o 0 0 o}
void main()
{
threat threat; / * intended to be a variable * /

www.manaraa.com

Declarative Programming 189

carrier carrier; / * create and initialize carrier
*/
cruiser cruiserl, cruiser2;

/* create and initialize two
cruisers * /

int clock = 0;
while ((carrier.status!= "arrived")II(cruiser

l.status != "arrived")
II (cruiser2. status! = "arrived"))
{
clock++

/ * move the ships * /
if (carrier. status != "arrived")
cruiser_transit (cruiserl, . .);

if (cruiser2.status != "arrived")
cruiser_transit (cruiser2, .. .);

/ * detect and clear threats * /
if ((threat = carrier_detect_threat (carrier))

! = NULL)
carrier_clear_threat(carrier,threat);

if((threat cruiser_detect
_threat (cruiserl)) ! = NULL)

cruiser_clear_threat(cruiserl,threat);
if ((threat = cruiser_detect_threat (cruiser

2)) ! = NULL)
cruiser_clear_threat(cruiser2,threat);

}
/* attack the target * /
carrier_attack_target(carrier,target);
cruiser_attack_target(cruiserl,target);
cruiser_attack_target(cruiser2.target) ;
}

We note that the c+ + program is much cleaner and easier to
understand; furthermore the program is much less sensitive to changes.
For example if a new cruiser is added to the task force, only one line of
code (i.e., task_force.insert(cruised)) has to be added to the program,
while a global change has to be made to the c program. This results not
only from using set-oriented constructs but also from the function
overriding mechanism. In addition the function transit is common to
different types of surface ships in the c+ + program; it is inherited from
the class surface_ship by any subclass. Any change to be made to
transit requires only one place to be changed. This is not true for the c

www.manaraa.com

190 Chapter 7

program. The property of being less sensitive to changes may be re
garded as a form of reusability-most of the software can be reused
when the software evolves.

7.3. LOGIC PROGRAMMING-PROLOG

Logic-programming languages are programming languages based on logic.
PROLOG IO may be the most popular; it is based on first-order logic, but unlike
resolution-based, refutational theorem proving, a theorem in PROLOG is proved
backward, i.e., from goals to supporting facts. It is generally agreed that back
ward, or deductive, theorem proving is more efficient than refutational theorem
proving, since it is guided by goals. However the axioms of a deductive theorem
proving system are restricted to Horn clauses (i.e., clauses that have at most one
unnegated literal). PROLOG was designed to be declarative in the sense that
programs are considered as theorems to be proved. Therefore a considerable
amount of programming detail is eliminated with an automatic theorem prover.

In brief a PROLOG program consists of a set of procedures, where each
procedure forms the definition of a certain predicate, and it is presented as a
sequence of clauses of the form:

P :- 01, 02, ... , On.

where each Qi, 1 :5 i :5 n, is a predicate. The preceding clause is interpreted as:

P is true if 01 is true, 02 is true, ... , and On is true

A clause of the form P. is simply interpreted as P is true. The P and Qs are called
goals or procedure calls; each goal or procedure call consists of a predicate
applied to some arguments.

Example 7.4. The following procedure defines the predicate american:

american(america).
american(X) :- partof(X,Y), american(Y).

The clauses can be interpreted as American is American; for any X
and Y, X is American if X is a part of Y and Y is American.

The arguments of a predicate are called terms; a term can be a constant, a
variable, or a structure. A variable by convention starts with a capital letter. A
structure consists of afunctor with a set of terms as its arguments; it is analogous
to a record in conventional programming languages. For example, the structure
vertex (2,3) designates a point with coordinates 2 and 3.

www.manaraa.com

Declarative Programming 191

A PROLOG program is evaluated interactively by issuing a question, which is
a clause without a left-hand side. Answers to the question can be either true or
false (if there is no variable in the question) or any set of values that instantiate
variables in the question so that the question clause is evaluated to true with the
instantiations. For example the question:

?- partof(X,america)

is interpreted as is X a part of America? The question is answered by finding
alternative values ofXs that are part of America from the program. Specifically a
value a can instantiate X if there exists a clause partof(a,america). The clause
partof(a,america) is evaluated as false if there is no clause partof(a,america) in
the procedure. In general to find instances of the variables of a goal predicate in a
question, PROLOG first matches the goal predicate with the left-hand side of some
clause. If a match can be found (Le., if the clause can be unified by the goal
predicate), the right-hand side of the clause is evaluated. Goals are evaluated
from left to right, and clauses are matched in the order they appear in the
procedure.

If a match is found in the procedure, instantiations found should be propa
gated as goals that have not been evaluated. In other words if an instantiation a
for a variable X is found in the match, a should be substituted for all instances of
X in goals that have not been evaluated, thus making those goals more specific.

If no match can be found in the procedure, PROLOG backtracks to the most
recently evaluated goal to try to find an alternative match. PROLOG allows a list
(sequence) of objects to be used as a term; a list consists of two variables [XIL]
(the head and the tail, separated by I) on a sequence of constants separated by
commas (e.g., [a, b, cl) or a mix of variables and constants (e.g., [a, biLl).
PROLOG provides a number ofprocedural predicates, which are predicates whose
true/false values are evaluated directly by the system, but not by matching. A
simple example of such predicates is, say, multiply. The predicate takes three
terms as its argume~ts; it is true if the result of multiplying the first and second
arguments is the third argument. For example multiply(2,3 ,6) is true. If any
arguments are variables, PROLOG produces different sets of instantiations such
that the predicate can be evaluated as true. For instance given the predicate
multiply(A,B,6), variables A and B can be instantiated to (1,6), (6,1), (2,3), (3,2),
respectively. Note that functions are not allowed to be a term in PROLOG, since
functions can be well implemented as procedural predicates.

Example 7.5. Assume that the database of a PROLOG program has the
following facts about the major cities in California and New Jersey:

american(united_states).
partof(california,united_states).
partof(los_angles,california).

www.manaraa.com

192 Chapter 7

partof(san _ francisco,califomia).
partof(new_ jersey,united_states).
partof(newark,new_jersey)
distance(los_angeles,san _ francisco,360)
distance(san_ francisco,los_ angeles,360)
distance(los_angeles,newark,4300).
distance(newark,los_angeles,4300).
distance(san_francisco,newark,4300).
distance(newark,san_francisco,4300).

Also assume that the program contains the following rules:

american(X) :- partof(X,Y), american(Y).

Now consider the question of retrieving all pairs of U.S. (Ameri
can) cities whose distances are less than or equal to 400 miles:

?- american(X),american(Y),distance(X,Y,D),D<=400.

The execution profile for the preceding query is shown in the table
below. Note that a goal that is not defined in the database [e.g., dis
tance(newark,newark,D)] is evaluated as false.

american(X) american(Y) distance(X,Y,D)

united_states united_states F
united_states los_angeles F
united_states san_francisco F
united_states newark F
united_states F
los_angeles united_states F
los_angeles los_angeles F
los_angeles san_francisco 360
los_angeles newark 4300
los_angeles F
san_francisco united_states F
san_francisco los_angeles 360
san_francisco san_francisco
san_francisco newark 4300
san_francisco F
newark united_states
newark los_angeles 4300
newark san_francisco 4300
newark newark
newark F
F

D <= 400

T
F

T

F

F
F

www.manaraa.com

Declarative Programming

Example 7.6. The following PROLOG program defines the predicate
dot(A,B'pJ, which computes the inner product P of two vectors A and B.
The inner product of two vectors (aI, ... , an) and (bI, ... , bn) is
defined to be the value of aibi + a2b2 + ... + an bn.

R1: dot([A1],[B1],P) :- P is A1*B1.
R2: dot([A11A2],[B1IB2],P) :- P1 is A1*B1, dot(A2,B2,P2), P is P1
+ P2.

In the preceding a clause of the form A is B*C means the value of
B*C is assigned to A, and a clause of the form A is B + C means the
value of B + C is assigned to A. Now consider the goal
dot([3,2,1],f1,2,3]). The goal is first matched by R2 (since the head of
R 1, in which the first two arguments are single-element lists, cannot be
matched by the goal), thus instantiating Al to 3, BI to I, A2 to [2,1], B2
to [2,3]:

R21 dot([31[2,1]],[11[2,3]],P) :- P1 is 3*1 ,dot([2,1],[2,3],P2), P is P1
+ P2.

The first subgoal PI is 3*1 can be evaluated as true directly by
PROLOG; thus PI is instantiated to 3. The second subgoal dot([2,I],
[3,2],P2) is matched by R2 (RI cannot match because the first two
arguments of the subgoal are not single-element lists), thus instantiating
Al to 2, BI to 2, A2 to [1], B2 to [3]:

R22 dot([21[1]],[21[3]],P) :- P1 is 2*2, dot([1],[3],P2), P is P1 + P2.

The PI can be instantiated directly to 4. The subgoal
dot([I],[3],P2) can now be matched by RI:

R23 dot([1],[3],P) :- P is 1*3.

Therefor the variable P in R23, which is the variable P2 in R22, is
evaluated to 3. R22 becomes

R22 dot([21[1]],[2![3]],P) :- P1 is 2*2, dot([1],[3],3), Pis 4 + 3.

The variable P is R22, which is the variable P2 in R2I, is now
instantiated to 7. R21 becomes

R21 dot([31[2,1]],[11[2,3]],P) :- P1 is 3*1, dot([2,1],[2,3],7), P is 3 +
7.

Consequently the P in R21 is evaluated to 10, which is the final
answer.

193

www.manaraa.com

194

7.4. COMPOSE-AN OBJECT-ORIENTED DATABASE
ENVIRONMENT

Chapter 7

The object-oriented paradigm in database technology is based on the follow
ing concepts: class, complex object (aggregation), encapsulation, inheritance,
message, and object identity. An object-oriented database management system
(OODBMS) uses two techniques for performance. Instead of using foreign keys
(Le., those attributes whose values are the keys of other records from other
tables) OODBMSs employ embedded pointers to establish data relationships,
and rather than assembling aggregates in an ad hoc fashion, they preassemble all
composite objects. Current commercial vendor products differ in many ways
(e.g., system architecture; defining, storing and manipulating objects; supporting
object-oriented paradigm; query language; and other fundamental database tech
nology, such as indexing, clustering, concurrency control and recovery); see
Refs. 9, and 11 for a comprehensive survey.

This section first introduces the essences of a relational query language, then
it discusses an object-oriented database system that provides a declarative query
language. A survey of object-oriented query languages that have been proposed
is found in Ref. 12.

7.4.1. Relational Query Languages

A relational database consists of a number of tables (relations); a table
consists of a number of rows (tuples), each tuple consists of a number of columns
(attributes), and the value of each attribute is defined by a domain (type). In a
simplified version of a relational query language (QUEL),13 a query is presented
in the following form without losing generality:

variable-specifier

variable-specifier
command
[where qualification)

A variable specifier declares a tuple variable:

range of (variable-id) is (relation-id)

A variable declared in this form is called a range variable whose domain is
(relation-id). Any attribute of the tuple variable is referenced by (variable
name).(attribute-name).

www.manaraa.com

Declarative Programming 195

A command is composed of the name of the command and its associated
arguments; an argument can be a constant, a range variable, or an attri~ute of a
range variable. The command can be one of the following:

• retrieverargument . . . argument): Retrieves values of the arguments,
where each argument is an arithmetic expression defined recursively as
follows:
-An attribute of a variable whose domain is integer or float is an arith
metic expression.
-An integer constant or a float constant is an arithmetic expression.
-If a and b are arithmetic expressions, then a + b, a - b, a * b, and alb
are arithmetic expressions.

-If a is an arithmetic expression then (a) is an expression.

In the preceding we assume that type conversions and operator precedences
are handled/defined in the same way as in c.

• append:(relation-id) «variable-id»: Appends the value of the variable
(variable-id) to the relation whose name is (relation-id).

• delete:(relation-id)«variable-id»: Deletes any tuple whose value matches
the instantiated value of the variable (variable-id).

• replace:(relation-id) «variable-idl),(variable-id2»: Replaces any tuple
whose value matches the value of the first variable with the value of the
second variable in the relation (relation-id).

• quit: Terminates the execution of the query interpreter.

A qualification is defined recursively as follows:

• A constant, an attribute of a variable, or an arithmetic expression is a term.
A string constant is expressed in the form of string.

• A comparison between two terms is a qualification; it is expressed as
(term op term), where op can be ==, ¥-, <, >, :5, or 2:.

• An assignment operation between two terms is a qualification; it is ex
pressed as (term = term) (i.e., the value of the second term is assigned to
the first term). An assignment is always evaluated as true.

• If a and b are qualifications, then (a and b) and (a or b) are qualifications.

As an example, assume the following relations are defined.

www.manaraa.com

196 Chapter 7

7.4.1.1. Schema Definitions

In the following, each tuple in the class emp has the following attributes:
name (a character string of length 12), age (an integer of length 3), salary (a
floating point number of length 10), dname (a character string of length 10
designating the name of the department in which the employee works), and
manager (a character string of length 12 designating the name of the manager for
which the employee works). Among these the attribute name is chosen as the key
attribute. The other relations are self-explanatory.

1. define relation emp (name:string:12,age:int:3, salary:float:10,
dname:string:10, manager:string:12) key:name go

2. define relation dept (dname:string:1O,floor:int:2,sales:int:12)
key:dname go

3. define relation sball (ename:string:12,position:string:12) go

7.4.1.2. Sample Data

emp

name age salary dname manager

mike 29 150000.00 shoe enda
sally 42 87750.00 toy ted
georgia 25 10000.00
ted 0 26157.80 toy melcom
enda 25 20000.00 shoe malcom
malcom 50 280000.00 admin

dept

dname floor

shoe I
toy 2
admin 5

sball

ename

mike
ted
georgia
georgia

sales

2500
1500
o

position

pitcher
shortstop
centerfield
pitcher

www.manaraa.com

Declarative Programming 197

The following are examples of some queries that may be made to the
database.

7.4.1.3. Example Queries

• Find the yearly salary and daily salary for Mike.

range of t is emp
retrieve (t.salary,t.salary/12,t.salary/250)
where (t. name = = "mike") go

• Find the age of the pitchers on the softball team.

range of s is sball
range of e is emp
retrieve (e.age)
where (s.position == "pitcher") and (e.name == s.en
arne) go

• Find the names of the employees who work on the first floor.

range of d is dept
range of e is emp
retrieve (e.name)
where (e.name == d.dname) and (d. floor == 1) go

• Find the floors that shortstops work on.

range of d is dept
range of e is emp
range of s is sball
retrieve (e.name,d.floor)
where d. dname == e. dname) and (e. name == s. ename) and
(s .position == "shortstop") go

• Find all employees who are paid more than their managers.

range of t is emp
range of e is emp
retrieve (e.name)
where (t. name == e. manager) and (e. salary> t . salary)

go

• Append an employee to the class emp. The name of the employee is tom,
the age of tom is 29, his salary is 37,000.00, his department is shoe, and
his manager is Mike.

range of t is emp

www.manaraa.com

198 Chapter 7

append:emp(t)
where (t.name = "tom") and (t.age = 29) and fas(t.sal

ary = 37000.00)
and (t. dname = "shoe") and (t. manager = "mike")) go

• Append all employees who work in the administration department to the
softball relation, and the position they play is pitcher.

range of t is emp
range of s is sball
append:sball(s)
where (t. dname = = "admin") and (t. name = = s. name) and
("pitcher" == s .position) go

• Fire Georgia.

range of e is emp
delete:emp(s)
where (e.name== "georgia") go

• Give a 15% raise to Mike.

range of t is emp
range s is emp
replace:emp(t,s)
where (t . name == "mike") and (s. salary = t. salary *
1 . 15) and (s. name =
t . name) and (s. dname = t . dname) and (s. age = t . age) and
(s .manager = t. manager) go

7.4.2. COMPOSE

Unlike a relational database, where all information has to be stored and
accessed as tables, an object-oriented database system can support an object
oriented application system directly and effectively by allowing objects to be
stored and accessed as a set of interconnected records. Consequently accessing a
complex object is accomplished in an object-oriented database without joining
several tables as a relational database requires. This capability has proved to be
useful in such complex applications as CAD, CAM, and CASE.

In addition to the features just discussed, the COMPOSE object-oriented
database14 provides the following capabilities:

• In COMPOSE objects can be selectively retrieved based on some condi-

www.manaraa.com

Declarative Programming 199

tions. Unlike conventional databases where conditions are restricted to
simple comparisons (such as =, <, », a condition in COMPOSE can be
any logical property of an object or among a set of objects. Such condi
tions can be defined by the user and added to the environment any time.

• In conventional databases only a few operations (such as append, delete,
or print) can be applied to objects (tuples). In COMPOSE however any
user-defined operations can be applied to objects. As conditions, such
operations can be added to the environment dynamically. This is partic
ularly important for multimedia applications: Drivers for different media
can be included as operations (conditions) dynamically to present objects
in different fonns (such as voice, graphics, and images).

Consider a set of object classes and a set of objects in these classes. The
following is a summary of the COMPOSE facilities for specifying queries,
integrity constraints, triggers, and views.

7.4.2.1. Queries

A COMPOSE query is presented in the following fonn, which retrieves all
possible instantiations (for the variables declared) that satisfy the qualifications
and apply the identified operation to the qualified objects.

variable-specifier
... / * declare the variables to be used by the query
*/

variable-specifier
command /* retrieval/storage operation based upon
some conditions * /
[where logical_expression]

A variable specifier takes the following fonn:

1. range of (variable-id) is (class-id)
2. var (variable-id) is (class-id)

If a (class-it!) is used, a variable declared in Fonn (1) is called a range variable,. a
variable declared in Fonn (2) is called a temporary variable. Either way a
variable (variable-it!) is declared with domain (class-it!). In general all possible
values of a range variable are enumerated in the query evaluation process, where
as temporary variables are typically used to store results produced by some
functions. Any attribute (attribute-it!) of a variable (variable-it!) can be accessed
by (variable-it!).(attribute-it!). If the attribute itself is another object, access to

www.manaraa.com

200 Chapter 7

any of its attributes (say, (attribute-id') is accomplished via the path (variable
id).(attribute-id).(attribute-id'). The same rule can be applied as long as an
attribute (of an object) is an object.

A command is composed of the name of the command and its associated
arguments (a constant, a range or temporary variable, or an attribute path). A
command can be one of the following:

• retrieve(argument, . .. ,argument): Retrieves the values of the arguments;
a constant cannot be used.

• append:(class-id)«variable-id»): Appends the value of variable (variable
id) to class (class-id); (variable-id) must be a temporary variable.

• delete:(class-id)«variable-id): Deletes any object from class (class-id)
whose value matches the value of variable (variable-id); (variable-id) is a
range variable.

• replace:(class-id) «variable-idl),(variable-id2»): Replaces any object
whose value matches the value of the first variable with the value of the
second variable in class (class-id); the second variable must be a tempor
ary variable, and the first variable must be a range variable.

• Any function call with its arguments.

Logical_expression is any c+ + logical expression.

Example 7.7. Assume that two objects classes are defined: vertex and
recto Each rect object is defined in terms of four vertices, and each
vertex object is characterized by its two coordinates:

class vertex {key char *vid; int x,y}
class rect{key char *rid; vertex vi,vii,viii,viv}

where the keyword key precedes the attribute that is the key of a
class. Further assume that he following functions are defined:

• int rect::eontain (reet p): Returns I if the target object (Le.,
self) contains the argument rectangle p and returns 0 other
wise.

• int reet::size (void): Returns the size of the target object.

Based on the preceding, the following query retrieves rectangles
contained in Rectangle C with sizes greater than 4.

range of t is rect
range of s is rect
var temp is int

retrieve (s.rid)

www.manaraa.com

NC N) && t.contain(s) && ((temp =

Declarative Programming

where (t.name
s.size) >4)

If this query were expressed in QUEL (relational), it would be
much lengthier and require specific knowledge about how to perform
the query:

range of r is rectangle
range of s is rectangle
range of rl is vertex
range of r2 is vertex
range of r3 is vertex
range of r4 is vertex
range of sl is vertex
range of s2 is vertex
range of s3 is vertex
range of s4 is vertex
retrieve (r.name)
where
s. name = NCN and
s . vertexl = s 1. name and s. vertex2 = s2. name and

s. vertex3 = s3. name and
s. vertex4 = s4. name and r. vertexl = rl. name and

r . vertex2 = r2. name and
r . vertex3 = r3. name and r . vertex4 = r4. name and
((r2.x - r1.x) * (r2.y - r3.y) > 4) and
rl.x > sLx and rl.y < sl.y and r2.x > s2.x and

r2.y < s2.6 and
r3.x> s3.x and r3.y < s3.y and r4.x > s4.x and

r4.y < s4.y

7.4.2.2. Integrity Constraints

An integrity constraint in COMPOSE is specified as:

variable-specifier

variable-specifier
logical_expression => logical_expression

201

An integrity constraint presented in the preceding form asserts that all
possible instantiations (for the variables declared) that satisfy the logical expres
sion on the left-hand side of => must satisfy the logical expression on the right
hand side as well.

www.manaraa.com

202

7.4.2.3. Triggers

A trigger in COMPOSE is specified as:

variable-specifier

variable-specifier
logical_expression => Operations

Chapter 7

A trigger presented in this fonn asserts that for all possible instantiations (for
variables declared) that satisfy the logical expression, the associated operation is
perfonned.

7.4.2.4. Views

The command to create a view is

create view (class-id):(variable-id) (attribute
id):(class-id) [width] , ... ,
(attribute-id): (class-id) [width]) body

where body is in the fonn of:

variable-specifier

variable-specifier
logical_expression

As in queries, variables are classified as range variables and temporary
variables, which can be declared in an arbitrary order. The fonnat for a variable
specifier is the same as that for queries. Let us assume that a view is declared in
the following fonn:

create view (class-id) : (variable-id)
range of (variable-id-l) is (class-id-l)

range of (variable-id-k) is (class-id-k)
var (variable-id- (k + 1) is (class-id- (k + 1)

var (variable-id- (k + r) is (class-id- (k + r)
logical_expression

www.manaraa.com

Declarative Programming

The semantics of the preceding definition follows:

(variable-id) is in (class-id) IF
for every (variable-id-1) in (class-id-1)

for every (variable-id-k) in (class-id-k»)
there exists a (variable-id- (k + 1) in (class-id- (k
+ 1)

there exists a (variable-id- (k + r) in (class-id- (k
+ r)

SUCH THAT

logical_expression is true.

Example 7.8. In control theory a linear system is an automaton charac
terized by a set of inputs, states, and outputs. The system takes the
inputs, adjusts the states, and produces the outputs. The system is linear
because subsequent states can be computed as a linear function (by
means of a state transition matrix) of its current states and the inputs.
Consequently the class linear_system is characterized by the following
attributes: id, state_transition_matrix, input_matrix and output
_matrix. In control theory a linear system can often be visualized as a
block diagram that consists of a box designating the system, a set of
input wires, output wires, and feedback wires that carry some weights
whose values are determined by the state transition matrix.

To produce a block diagram of each linear system object, the
following view linear_systemg can be defined:

/ * produce a geometric obj ect * /
create view linear_systemg s (id: string,
b: block_diagram)
range of t is linear_system
sas (t. id, s. id) and c_transform (t, s .b)

where c_transform (t,s.b) is a method for generating a block dia
gram object t.b (which consists of a set of block and arc objects in
symbolic form) from a linear system object s.

To display a linear system (or a set of linear systems) represented
as a block diagram based on some properties of the block diagram, the
following query can be used

var w is window
range of s is linear_systemg

203

www.manaraa.com

204 Chapter 7

display_view (s, w)
where
qualifications for sand w

where display_view(s,w) draws the view for block diagram s into a
window w. Figure 7.1 shows an example. The transfonnation from a
linear system into a block diagram is transparent, so the user assumes
that the view actually exists. If the user is aware of the existence of the
transfonnation procedure and wants to display a linear system (or a set
of linear systems) based on some of its generic properties, the following
query is valid as well:

var w is window
range of t is linear_system
var s is block_diagram
display_view (s, w)
where
c_transform(t, s) and qualifications for t and w

o

o

5

o

9

o

5

y1

y2

y3

+

o

o

5

r +

o

o r'

(t) + y(t)

W*"BD(+ 5 +8)

.

Figure 7.1. Visualization of a linear system.

www.manaraa.com

Declarative Programming

PROBLEMS

205

1. Design a COMPOSE database that supports graphical applications. For
example the database can contain a number of geometric types (e.g., circle,
triangle, square) and a number of methods associated with geometric types (e.g.,
intersect, tangent). Write at least three queries that contain some methods for the
database.

2. Design a COMPOSE database that supports multimedia applications.
For example the database can contain a number of media types (e.g., image and
voice) and a number of methods associated with such types (e.g., play, record,
display). Write at least three queries that contain some methods for the database.

3. For the geometric types defined in Problem 1, write a simple c+ +
program that solves the three queries developed for that problem using the set
constructs described in Section 7.2.

4. For the multimedia types defined in Problem 1, write a simple c+ +
program that solves the three queries developed for that problem using the set
constructs described in Section 7.2.

5. Based on the answers to Problems 3 and 4, compare the solutions
implemented as methods and as programs. Is it true that any object-oriented
query can be answered by a program? If yes, what are the disadvantages associ
ated with this approach?

6. Rewrite the SETL program in Example 7.1 in c+ + with the set-oriented
constructs as described in Section 7.2.

7. Enumerate changes that can be made to the scenario in Example 7.3 and
discuss the impact created by each possible change to the c+ + program given.
Do the same for the c program given.

8. Combine extensions made to c+ + in this chapter and Problem 5.3.
Revise the c+ + program in Example 4.3 and discuss the advantages of the
extensions.

9. Consider the framework of a deductive database discussed in Section
3.2. Discuss the possibility of a declarative concurrent-programming system so
that concurrent programs are written without communication/synchronization
details. (Hint: Can communication/synchronization requirements be specified as
constraints?)

www.manaraa.com

206 CluJpter 7

10. Define a predicate, equaLab(L), in PROLOG, where equaLa_b(L) is
true if L contains an equal number of a and b.

11. Define a predicate, min(L,M), in PROLOG, where min(L,M) is true ifMis
the smallest element of the list L.

REFERENCES

1. Kennedy, K., and Schwartz, 1. Computers and Mathematics with Applications 1, 97-119 (1975).
2. Schonberg, E., Schwartz, J., and Sharir, M. ACM Transactions on Programming Languages and

Systems 3:2, 126-143 (Apr. 1981).
3. Feather, M. S., and London, P. E. Science of Computer Programming 2, 91-131 (1982).
4. Green, C., and Westfold, S. Machine Intelligence 10, 339-359 (1982).
5. Cooke, D. E., "An executable high-level language based upon multisets" (Dept. of Computer
Science, University of Texas at EI Paso, 1994).

6. Banatre, J. P., and Le Matayer, D. Communications of ACM 36-1,98-111 (Jan. 1993).
7. Freudenberger, S., Schwartz, J., and Sharir, M. ACM Transactions on Programming Languages

and Systems 5:1, 26-45 (1983).
8. Cheng, T., Lock, E., and Prywes, N. IEEE Transactions on Software Engineering 10:5, 552-563
(Sept. 1984).

9. Communications of the ACM, 34:10, Oct. 1991.
10. Warren, D. H. D., Pereira, L. M., and Pereira, F. "PROLOG-the language and its implementation
compared with LISP." Symposium on AI and Programming Languages, ACM SIGPLAN 12:8
(1977) 109-115.

II. Everest, G. C., and Hanna, M. S. "Survey of object-oriented database management systems,"
Carlson School of Management, University of Minnesota, Minneapolis, 1992).

12. Bertino, E., Negri, M., Pelagatti, G., and Sbattella, L. IEEE Transactions on Data and Knowledge
Engineering 4.3, 223-237 (June 1992).

13. Stonebraker, M., Wong, E., Kreps, P., and Held, G. D. ACM Transactions on Database Systems
1:3, 189-222 (Sept. 1976).

14. Sheu, P.c.-Y., COMPOSE user's guide (Visual/lnteractive Data Engineering Laboratory, Univer
sity of California, Irvine, CA, 1996).

www.manaraa.com

8

Automatic Program Synthesis and Reuse

Given a requirements specification, the goal of automatic program synthesis is to
derive, or synthesize, an executable program whose functionalities meet the
specification. Ifwe are willing to sacrifice performance, a requirements specifica
tion may already be executable. For example a requirements specification in first
order logic can be proved by a theorem prover given a standard set of axioms of
mathematics, where the proof procedure essentially constructs a program. How
ever this process could be very inefficient. Automatic program synthesis with
reasonable efficiency has been the core of software engineering for a long
time. 1•2 Unfortunately most of the approaches proposed are restrictive because
they work only for small examples. The major difficulty of program synthesis
lies in the fact that it has to derive the control structure of a program-hopefully
efficient-a task that is difficult even for a programmer.

Existing approaches to automatic program synthesis are classified as deduc
tive synthesis (Section 8.1) or program transformation (Section 8.2). In a deduc
tive program synthesis system, program functionalities are first specified in logic.
A proof is then attempted from the input specifications to the required output
specifications, based on some available axioms. If such a proof exists, a program
can then be built based on the proof process. In a program transformation system,
a very high-level and possibly inefficient program specification is transformed
with a set of transformation rules into a more efficient executable program.

An area closely related to automatic programming is software reuse. Chap
ter 8 also presents the idea of program abstraction (Section 8.3), which employs
highly parametrized program templates that can be instantiated from applica
tions, and an approach applicable to instantiating abstract algorithms automat
ically (Section 8.4).

8.1. DEDUCTIVE PROGRAM SYNTHESIS

In a deductive program synthesis system, program functionality can be
expressed in the following form:

program_name(X) <- find Y such that q(X,Y) where p (X)

207

www.manaraa.com

208 Chapter 8

where p(X) asserts the properties of the input variable X (this can be extended to a
set of variables) and q(X,Y) asserts the properties of the output variable Y this can
be extended to a set of output variables) and its relationship with X. Examples 8.1
and 8.2 are taken from Ref. 3.

Example 8.1. The following assertions specify a program that com
putes the square root of a nonnegative integer:

sqrt (N) <= find Z such that
integer(Z) and Z2 ~ N ~ (Z + 1)2
where integer (N) and 0 ~ N

Example 8.2. The following assertions specify a program that sorts a
list:

sort (L) <= find Z such that
ordered(Z) andpermutation(L,Z)
where islist (L)

Now given a specification

program_name(X} <- find Y such that q(X,Y} where p(X}

the deductive synthesis system tries to establish a proof for the theorem

(\fX}(3Y}(p(X) -> q(X,Y»

The proof of the theorem must be constructive; i.e., it must show how to obtain
the output(s) from the input(s). To do this various rules can be expressed and
used to guide the proof process. Reference 3 uses a basic structure called sequent,
which is a table consisting of multiple records of the form:

[assertions: ... ; goals: ... ; outputs: ...]

We call each of these records a sequent record. It consists of three logical
sentences: assertions, goals, and ougmts. Consider a sequent consisting of the
following records:

[assertions: A1 (a, X) i goals: null i outputs: t1 (a, X)]

[assertions:Am(a,X)igoals:nullioutputs:tm(a,X)]
[assertions:nulligoals:G1(a,X) ioutputs:t1(a,X)]

www.manaraa.com

Automatic Program Synthesis and Reuse

[assertions:nulligoals:Gn(a,X)ioutputs:tn(a,X)]

The following is its semantics:

if for all X, Al (a,X) and

for all X, Am (a, X) then
for some X, Gl (a, X) or

for some X, Gn(a,X)

209

Initially the system has one sequent record for the program to be con
structed: The assertion is p(X), the goal is q(X,Y), and the output is Yand some
generic sequents common to all programs. As the proof proceeds, additional
sequents are produced based on some rules. Since the objective is to prove that
assertions -> goals (Le., -assertions V goals), this process continues until a
sequent record whose goals attribute becomes true or whose assertions attribute
becomes false. At this point the outputs attribute becomes the program. The
following sections summarize rules that can be applied to produce new sequents.
The logical foundation of such rules can be found in Ref. 3.

8.1.1. Splitting Rules

• And-Split Rule: A sequent record of the form [assertions: F and G; goals:
null; outputs: t] can produce two sequents (or be split into two sequents):
[assertions: F; goals: null; outputs: t] and [assertions: G; goals: null;
outputs: t]

• Or-Split Rule: A sequent record of the form [assertions: F or G; goals:
null; outputs: t] can produce two sequents (or be split into two sequents):
[assertions: null; goals: F; outputs: t] and [assertions: null; goals: G;
outputs: t]

• If-Split Rule: A sequent record of the form [assertions: null; goals: if F
then G; outputs: t] can produce two sequents (or be split into two se
quents): [assertions: F; goals: null; outputs: t] and [assertions: null;
goals: G; outputs: t]

8.1.2. Transformation Rules

Transformation rules are presented in the form of:

r => 5 if P

www.manaraa.com

2/0 Chapter 8

which means an occurrence of the logical expression r can be replaced by an
equivalent expression s provided that the condition P is true. For example the
following rule:

x + 0 => X if number(X)

states that any occurrence of the expression X + 0 can be replaced by the
expression X if X is a number. The general forms of the sequents that can be
produced from a transformation rule are the following:

• A sequent record of the form: [assertions: F; goals: null; outputs: t] can
produce the following sequent record (or be transformed into the follow
ing sequent record) from the transformation rule r => s ifP: [assertions:
ifPO then F(J(rO +- sO); goals: null; outputs: to], where the notation F(J(rO
+- sO) stands for "Apply the unifier 0 to F and replace all instances ofr 0
with so."

• A sequent record of the form: [assertions: null; goals: F; outputs: t] can
produce the following sequent record (or be transformed into the follow
ing sequent record) from the transformation rule r => s if P: [asser
tions:null; goals: PO and F(J(rO +- sO); outputs: to].

8.1.3. Resolution Rules

Assuming that (1) the sequent record contains two assertions and/or goals F
and G, (2) P, and Pz are subsentences of F and G, respectively, not within the
scope of any quantifier, and (3) there exists a unifier 6 for P, and Pz so that P, 0
and Pz0 are identical, the following rules hold:

• The AA-Resolution Rule: Two sequents of the form: [assertions: F; goals:
null; outputs: null] and [assertions: G; goals: null; outputs: null] can be
resolved and produces the new sequent record: [assertions: F(J(P, 0 +
true) or G(J(P2 0 +- false); goals: null; outputs: null] .

• The GG-Resolution Rule: Two sequents of the form: [assertions: null;
goals: F; outputs: null] and [assertions: null; goals: G; outputs: null] can
be resolved and produces the new sequent record: [assertions: null; goals:
F(J(P, 0 +- true) and G(J(Pz 0 +- false); outputs: null].

• The GA-Resolution Rule: Two sequents of the form: [assertions: null;
goals: F; outputs: null] and [assertions: G; goals: null; outputs: null] can
be resolved and produces the new sequent record: [assertions: null; goals:
F(J(P, 0 +- true) and not(G(J(Pz 0 +- false)); outputs: null].

www.manaraa.com

Automatic Program Synthesis and Reuse 211

• The AG-Resolution Rule: Two sequents of the form: [assertions: F; goals:
null; outputs: null] and [assertions: null; goals: G; outputs: null] can be
resolved and produces the new sequent record: [assertions: null; goals:
not(F(}(P1 (J ~ true)) and G(}(P2 (J ~ false); outputs: null].

For the preceding rules if only F or G has an output expression t, then the
new sequent record has t (J as its output expression. If F has t l as its output
expression and G has t2 as its output expression, then the new sequent record has
if PI (J then r1 (J else t2 (J as its output expression.

8.1.4. Induction Hypothesis

Given the sequent record: [assertions: peA); goals: r(A,Z); outputs: Zl, a
new assertion, namely, the induction hypothesis, can always be added: [asser
tions: if U <wathen ifp(U) then r(U,f(U)); goals: null; outputs: null], where
<w is any ordering relation that is well defined.
Example 8.3, given in Ref. 3, illustrates the program synthesis process.

Example 8.3. Consider the problem of constructing two programs
div(!,.I) and rern(!,.I) which finds the integer quotient of dividing a
nonnegative integer! by a positive integer 1. A specification for the
problem can be established as:

(div(I,J) ,rem(I,J)) <= find (Y,Z) such that
I = YJ + Z and 0 :5 Z and Z < J
where 0 :5 I and 0 < J

The two programs can be derived as follows:

1. Establish initial sequents:

[assertions: 0 :5 I and 0 < J; goals; null; outputs: null]
(#1)
[assertions: null; goals: I = VJ + Z and 0 :5 Z and Z < J;
outputs: (div(I,J) = V, rem(I,J) = Z)] (#2)

2. Assume the following generic sequents:

[assertions: U = U; goals: null; outputs: null] (#3)
[assertions: U :5 V or V < U; goals: null; outputs: null]
(#4)

3. Apply the And-Split rule to #1 to obtain

[assertions: 0 :5 I; goals: null; outputs: null] (#5)
[assertions: 0 < J; goals: null; outputs: null] (#6)

www.manaraa.com

212

4. Assume the following transformation rules (TR3) are avail
able:

OV => 0 (TR#1)
(U + 1)V => <+ V (TR#2)
o + V => V (TR#3)

5. Apply TR#1 to YI in #2 with the unifier: () = (OIY,.lIZ)
produces the following sequent record:

[assertions: null; goals: I = 0 + Z and 0 :5 Z and Z < J;
outputs: (div(I,J) = 0,
rem(I,J) = Z)] (#7)

6. Apply TR#3 to #7 to obtain

[assertions: null; goals: I = Z and 0 :5 Z and Z < J;
outputs: (div(I,J) = 0,
rem(I,J) = Z)] (#8)

7. Apply the GA-Resolution Rule to #8 and #3 with () =
(I1UJIZ), PI = (I = Z), and P2 = (U = U), the following
sequent record can be produced

[assertions: null; goals: 0:5 1and 1< J; outputs: (div(I,J)
= 0, rem(I,J) = I)]
(#9)

8. Apply the GA-Resolution Rule to #9 and #5 with 6 being the
identity unification and PI = P2 = (0 :5 I), the following
sequent record can be produced

[assertions: null; goals: 1 < J; outputs: (div(I,J) = 0,
rem(I,J) = I)] (#10)

9. Apply TR#2 to #2 with () = ((YI + 1)/Y,YdU,.lIV), the
following can be obtained

[assertions: null; goals: I = Y1J + J + Z and 0 :5 Z and Z
< J; outputs:
(div(I,J) = Y1 + I, rem(I,J) = Z)] (#11)

10. Assume the following transformation rule is available:

U = V + W => U - V = W (TR#4)

11. Apply TR#4 to #11 to produce

[assertions: null; goals: I - J = Y1J + Z and 0:5 Z and
Z < J; outputs: (div(I,J) = Y1 + 1, rem(I,J) = Z)] (#12)

Chapter 8

www.manaraa.com

Automatic Program Synthesis and Reuse

12. Fonn the following induction hypothesis based on #2:

[assertions: if (U1 'U2) <w (I,J) then if 0 :5 U1 and 0 <
U2 then U1 = div(U1,U2) U2 + rem(U 1,U2) and 0 :5
rem(U1,U2) and rem(U1,U2) < U2] (#13)

13. Apply the GA-Resolution Rule to #12 and #13, with (J = (/
- J/V1,J1U2,div(I - JJ)/Y1, rem(/ - JJ)/Z), PI being (/
- J = Y1J + Z and 0:5 Z and Z < 1), and P2 being (VI =
div(U1,V2) V 2 + rem(V1,V2) and 0 :5 rem(V1,V2) and
rem(UI'V2) < V 2), the following can be obtained

[assertions: null; goals: true and not (if (I - J,J) <w (I,J)
then if 0:5 I - J and 0 < J then false; outputs: (div(I,J)
= div(1 - J,J) + 1, rem(I,J) = rem(1 - J,J)] (#14)

14. Reduce #14 to the following by the fact that not(P -> R)) is
equivalent to P and Q and not(R):

[assertions: null; goals: (I - J,J) <w (I,J) and 0:5 I - J
and 0 < J; outputs: (div(I,J) = div(1 - J,J) + I, rem(I,J)
= rem(1 - J,J)] (#15)

15. Assume the following transfonnation rule is available:

(U1,U2) <w (V1,V2) => true if U1 < V1 and 0:5 U1 and
o :5 V1 (TR#5)

16. Apply TR#5 to #15 to produce the following:

[assertions: null; goals: (I - J,J) < (I,J) and 0 :5 I - J
and 0 :5 I and 0 :5 I - J and 0 < J; outputs: (div(I,J) =
div(1 - J,J) + 1, rem(I,J) = rem(1 - J,J)] (#16)

17. Apply transfonnation rules and the GA-Resolution Rule
.with #5, #6 and #16 to produce

[assertions: null; goals: J :5 I; outputs: (div(I,J) = div
(I - J,J) + 1, rem(I,J) = rem(1 - J,J)] (#17)

18. Apply the GA-Resolution Rule to #4 and #17 to obtain

[assertions: null; goals: not(1 < J); outputs: (div(I,J) =
div(1 - J,J) + 1, rem(I,J)
= rem(I-J,J)] (#18)

19. Apply the GG-Resolution Rule to #18 and #10:

[assertions: null; goals: true; outputs: (div(l,J) = if I < J

213

www.manaraa.com

214 Chapter 8

then 0 else div(1 - J,J) + 1, rem(I,J) = if I < J then I else rem(1
J,J)] (#19)

which is the programs sought. Note that conditions are added to the
outputs, since both $10 and $18 have output expressions.

Other work on deductive program synthesis is found in Ref. 4. The approach
in Example 8.3 attempts to compose a program, based on some available algo
rithms, with a theorem-proving process. A more drastic approach is to develop a
new algorithm completely from scratch.5,6 Reference 6 proposes a top-down
approach for automatic algorithm design based on the divide-and-conquer princi
ple. A divide-and-conquer algorithm can be expressed in its generic form as:

f:X = if
Primitive:X -> Directly_Solve:X;
-Primitive:X -> Compose·(id X f)·Decompose:X
fi

where f is the function to be designed, Primitive stands for a logical function on
the inputs variable X, id is the identity function that returns whatever is input, and
Compose and Decompose are functions to be determined. (However the function
Decompose should decompose the input set into smaller subsets, and Compose
should merge partial answers obtained from solving those subsets). The notion
F:X is the same as the notation F(X), i.e., applying the function F to the variable
X,. and the notion G X H is defined by G X H:(x,y) = (G:x,H:y). Finally the
notion G .H, called the composition of G and H, designates the function resulting
from applying G to the result of applying H to its argument. Note that we use a
variable notation for the functions Compose, Decompose, Directly_Solve, and
Primitive,. this means they are themselves variables and their values need to be
determined.

As a simple instance of the generic divide-and-conquer algorithm, consider
the specification for the algorithm min that computes the smallest element from
an integer list:

min:X = Z such that X ¥- nil -> Z E bag:X and Z ::5 bag:X
where integer_listX = true

Now let min be a function that computes the smallest element from an integer
list, min2 a function that computes the smaller element from its two arguments,
rest a function that removes the first element from its input (list) and returns the
remaining list,first returns the first element from its input list, andfirsLrest:L =
(first:L,rest:L). Using the following substitutions:

www.manaraa.com

Automatic Program Synthesis and Reuse

-rest/Primitive
first / Directly _Solve
min2/Compose
first_rest/Decompose

The generic algorithm becomes

min:X = if
rest:X -> first:X;
-rest:X -> min2·(id X min)·first_rest:X
fi

215

This is a beautiful recursive algorithm that computes the smallest element from
an integer list.

The approach proposed in Ref. 6 accomplishes the preceding task as follows.

1. The algorithm chooses a good function to decompose a list; the function
first_rest naturally stands out.

2. The function -rest is chosen to be Primitive, since first-rest has to
return a value to min (which is rest:X) so that the input specification X¥
nil is satisfied and the else branch of min can be meaningfully executed.

3. The algorithm introduces the following new variables:

first_rest:Xo = (Xl ,X2)
Id:Xl = Zl
min:X2 = Z2
Compose: (Zl' Z2) = Zo
4. The algorithm tries to verify that the output (which is Zo) of the compos
ite function call

Compose' (id X min) . first_rest:Xo

and the input to min (which is Xo) satisfies the specification of min.
Obviously this attempt fails, since Compose is not known. However the
algorithm can derive the output condition for Compose during the veri
fication process.

5. Specifically assuming the following are true:

first_rest:Xo = (xl,xJ (i.e., Xl first:Xo and X2
rest:Xo)

id: Xl = Zl (i. e., Xl = Zl)
min: X2 = Z2 (i. e., Z2 E bag: X2 and Z2 :5 bag: X2)

the algorithm tries to verify the following specification for min:

Zo E bag:Xo and Zo:5 bag:Xo

www.manaraa.com

216 Chapter 8

6. The process of deriving output conditions for Compose proceeds from
the theorem (i.e., the preceding specification) to be proved. First Zo E
bag:Xo if Zo = first:Xo or Zo E rest:Xo' In other words Zo E bag:Xo if Zo
= ZI or Zo E Zz by definition. This means if we can prove that Zo = XI
or Zo = Xz (note that this is a stronger condition), then we can prove Zo
E bag:Xo' Now Zo :s bag:Xo if Zo :s first:Xo and Zo :s bag' rest:Xo' In
other words Zo :s bag :Xo ifZo :s XI and Zo :s bag:Xz by definition. Also
by definition XI = ZI and Zz :s bag:Xz. This means that if Zo :s ZI and
Zo :s Zz, then we can prove Zo :s bag:Xo'

7. In summary if we have

then the specification for min can be verified. This can easily be accom
plished if we set the preceding conditions to be the output conditions for
Compose! Thus the following specification can be written

Compose: (Zl ' Z2) = Zo
such that (Zo = Zl or Zo = Z2) and
(Zo :s Zl and Zo :s Z2)

where integer: Zl = true and integer: Z2 = true

A similar approach can be followed to find that the operator first satisfies the
output conditions of Directly_Solve. From the preceding, if a simple algorithm
for min2 can be derived, and it is relatively straightforward according to Ref. 6,
the task of designing a divide-and-conquer algorithm for finding the smallest
element of an integer list can be accomplished.

8.2. TRANSFORMATIONAL PROGRAM SYNTHESIS

Program transformation includes predefined transformations (e.g., rewriting
rules) and program constructions from a high-level specifications to a low-level
executable form. As an example of the semantic transformation approach, assum
ing that associated with an object class synchronous_cell, we have an efficient
algorithm called G:shortpath (A,B,P,R), which asserts the existence of a path P
of length less than or equal to R between two vertices A and B in a circuit G. The
property of shortpath can be expressed by rewriting a rule of the form LHS <=
RHS, which says the clause RHS can be replaced by the clause LHS in a
specification (presented in PROLOG syntax).

Rule 1:
G:shortpath(A,B,P,R) <= G:path(A,B,P), G:length(P,L}, L :s R

www.manaraa.com

Automatic Program Synthesis and Reuse 217

Finding an electrical path that does not pass through a specific terminal is equiva
lent to finding a path in a modified circuit that excludes the undesirable terminal
from the original circuit. This information can be described as rewriting Rule 2:

Rule 2:
G:remove(C,G'), G':path(A,B,P) <= G:path(A,B,P), -G:member(C,P)

where G:remove(C,G') is a method for removing a terminal C from a circuit G
and the resulting circuit is G'.

With the preceding a logic program:

g:path(a,b,P), -g:member(c,P), g:length(P,L), L :5 R

can be transformed into the following equivalent program by rewriting Rule 2:

g:remove(c,G'), G':path(a,b,P), G':length(P,L), L :5 R

The transformed program can be transformed again by rewriting Rule 1:

g:remove(c,G'), G':shortpath(a,b,P,R)

The resulting program is much more efficient than the original program!
Note that applying rewritten rules in the transformation process preserves the
correctness of the program, Le., given the same set of inputs, the same set of
outputs is produced. Criteria for correctness preservation in a program transfor
mation system are discussed in Ref. 7. A survey of program transformation
approaches is found in Refs. 8 and 9.

The program to be transformed is usually written in a wide-spectrum lan
guage, which contains a mixture of low-level procedures and high-level specifi
cations. IO•11 Existing transformation systems can be further divided into two
classes: those that perform transformations automaticallyl2-15 and those guided
by users. 16.17

One of the major problems with existing automatic program transformation
systems is that most of them try to transform a program from scratch; consequently
the lack of driving force in a design process can lead only to limited successes in
practical applications. Even though some search approaches, based on cost func
tions, have been employed, global strategies have yet to be integrated effectively. IS

8.3. PROGRAM ABSTRACTION AND INSTANTIATION

Software reuse is closely related to automatic programming. In Chapter 6
we discussed some programming tools that provide a rich set of generic algo-

www.manaraa.com

218 Chapter 8

rithms from which new applications can easily be built. This feature is partic
ularly enforced in such object-oriented programming languages as c+ +. In
addition to the mechanism that supports inheritance, c+ + also supports the
concept of templates-highly abstract classes for which even the types of some
members can be parameterized.

Example 8.4. (Ref. 19) The following is a c+ + template that declares
a parameterized class vector. Note that the type of the attribute v is a
parameter.

template(class T) class vector{
T *v;
int sz;
public:
vector (int s) ;
T& operator [] (int i) ;
int size (void) ;
void sort (Vector(T) &v)

}
void template(class T): : sort (Vector(T) &v)
{
unsigned n = v. size () ;
int i, j :
T temp;
for (i = 0; i < n-1; i++)
for (j = n-1; i < j; j--)
{
if (v [j] < v[j -1]) / /the operator < has to be

/ / overloaded for T
temp = v [j] ;
v[j] = v[j-1];
v [j -1] = temp;
}
}

The concept of parameterizing a type is significant in software reuse, since
a template can be written for many possible instantiations. A template func
tion, such as the function sort in Example 8.4, is a typical example of the
program schemata discussed in,2o which goes beyond templates by attempting
to automate the process of abstracting several algorithms similar in structure
into an abstract algorithm. For example the following two algorithms PI and
P2 can be abstracted to the program schema R based on an analogy with
mappings2o:

www.manaraa.com

Automatic Program Synthesis and Reuse

0=> k <= b
n => lamda <= c
::5 => a <= ;:=:

z => 13 <= B[p]
A => 8 <= B
where
P1 : begin comment minimum-value program
type n, i EN, z E R, A E [0 :n] -> R
Bz : assert true
(z,i) := (A[O],O)
loop L z : assert z ::5 A[O: i], z E A[O: i]
until i = n
i := i + 1
if A[i] < z then z : = A[i] fi
repeat

Ez : assert z::5 A[O:n], z E A[O:n]
end
Pz : begin comment maximum-position program
typeb,c,p,j EZ, BE [b:c] ->a*
Bz : assert b ::5 C
(p,j) := (c,c)
loop Lz : assert B[p] ;:=: B[j :c], p E [j :c]
until j ¥- b
j:=j-l
if B[j] < B[p] thenp:= j fi
repeat

Ez : assert B[p] ::5 B[b:c], p E [b:c]
end
R: begin comment maximum-position program
type i, k, lamda E z, 13 E T,
8 E [k: lamda] - > T, a E TXT - > B

Bz : assert k::5 lamda, a(u,u),
a(w,u)/\-a(w,u) -> a(v,u)
(13,i) := (8(kj,k)

loop Lz : assert a(13,8k:i])
assert 13 E 8 [k: i])

until i = lamda
i:=i+l

if -a(13,8[i]) then 13 = 8[i] fi
repeat

Ez : assert a(13,8[k:lamda]),
assert 13 E 8 [k: lamda]

end

219

www.manaraa.com

220 Chapter 8

The reverse of the program abstraction program is called the program
instantiation problem. An abstract program schema can be instantiated by substi
tuting the symbols used. For example with the set of substitutions 1T, the program
schema R can be instantiated to the program P3:

1T:

k => 1
lamda => 100
a (13, 8 [u)) => odd (u) -> f (m) :5 f (u)
P3: begin comment function minimum program
type i, mEN, fEN -> R

B 2 : assert true
(m,i) := (1,1)
loop L2 : assert ('V E [1: i)) (odd (u) -> f (m) :5 f (u))
until i = 100
i := i + 1
if odd(i) 1\ f (m) > f (i) then m : = i fi
repeat

E2 : assert('VE [1:100)) (odd(u) ->f(m) :5f(u))
end

8.4. AUTOMATIC SOFTWARE REUSE

Software reuse has been a major objective of modem programming sys
tems.21 - 23 Research on software reuse has focused primarily on building software
libraries so that library modules can be reused either directly24-26 or through some
transformations. 14,15

A critical problem associated with software reuse is that given the specifica
tions of two problems, how does a developer determine if the solution (program)
for one can be instantiated and reused to solve the second. This problem is quite
practical and severe. For example a Smalltalk programmer must select the best
program from 5000 messages (or 249 classes) without semantic-based tools,
guided only by very thick manuals. Obviously a programmer cannot keep all the
classes and their message protocols in mind. Most solutions to this problem are
based on some form, indices, or catalogs.27,28 However, these are not fully
automatic.

A simple solution to the problem of mapping abstract algorithms to applica
tion algorithms automatically follows:

• Construct abstract object classes and their associated methods at the object
level.

www.manaraa.com

Automatic Program Synthesis and Reuse 221

• Compare the application with the abstract classes and their associated
methods; if a match can be identified, instantiate those abstract algorithms
whose functionalities can be matched.

We consider a library of algorithms to be a collection of useful methods
presented in an object-oriented logic system as described in Chapter 3. To be
instantiated by most applications these algorithms should be as abstract as pos
sible. As an example we define the abstract class w_graph (weighted_graph) and
some methods that implement efficient graph-based algorithms as follows*:

class (node)
class(edge,v1:node,v2:node,w:float)
class (w_graph,ns:set_of_node,es:set_of_edge)
w_graph:method(w_path,P:set_of
_edge,A:node,B:node,W:float)

G.w_path(P,A,B,W) <- (3E)
member_of (E,G.es), (E.v1 = A), (E.v2 = B), (P =
[E]), (W = E.w).
G.w_path(P,A,B,W) <- (3 E) (3 P 1) (3 W1)
member_of (E,G.es) , (E.v1 = A), set_of_edge(P1),
float (W1),
G:w_path(P1,E.v2,B,W1), (W=E.w+W1), (P= [Elp1])
G.shortest_path(P:set_of
_edge,A:node,B:node,W:float) <
G:w_path(P,A,B,W) ,
- ((3 P1) (3 W1) set_of_flight (P1),
float (W1), G:w_path(P1,A,B,W1), (W1 < W)))

If we compare the functionality of the method shortest_path and the func
tionality of the method cheapest-connection described in Chapter 3 (p. 44), we
find that the following terms syntactically correspond to each other:

vertex(V)
edge(E)
w_graph(G)
G.path(P,A,B,W)
G.shortest
_path(P,A,B,W)

city(C)
flight(F)
airline(A)
A.connection(C,S,T,F)
A.cheapest
_connection(C,S,T,F)

*In the remainder of Chapter 8, for clarity we use the notation c:m(pl :dl , pn:dn) in place of
c:m(pl • ...• pn) when the functionality of the method is given.

www.manaraa.com

222 Chapter 8

In conventional unification algorithms, two predicates with different predi
cate heads cannot be unified. However we know that the shortest_path algorithm
in class w _graph can be used to find for instance the cheapest connection in the
class airline by properly instantiating the variables in the shortest_path algorithm
with those in the airline reservation system. This is an example of matching with
analogy4.29; to perform this we need an analogical unification process. This can be
accomplished by extending the object unification algorithm to include second
order. However a second-order unification algorithm considers only the number of
arguments when two predicates are matched; as a consequence some random
substitutions may be produced. For example consider two predicates is_equal
_set(SI's2) and is_equaLtuple(T1,T2), where the former is true iftwo sets Sl and
S2 are equal and the latter is true iftwo tuples T1 and T2 are equal. According to the
analogical unification algorithm, they can be unified. However since the argument
domains for the two predicates are different, an algorithm testing for set equality is
fundamentally different from that for tuples.

To solve problems with second-order unification, a little more thought
suggests that the match between an application program and an abstract program
should be done with theorem proving. This implies that we should parameterize
the structure of an abstract class and present it as a derived class. The concept of
parrameterization is similar to that oftemplates in c+ +. However to instantiate a
template in c+ +, the programmer has to be aware of its existence. Declaring a
template as a derived class can eliminate such a need, so that the association
between an application and a template can be established and transparent to the
programmer. With such we can establish the following principles:

If P -> Q, then P can be used to solve Q.
If P <-> Q, then P can be used to solve Q, and vice versa.

Example 8.5. As an example we can write the abstract class w_graph as
follows:

class(w_graph,NS:set_of_X,ES:set_of_Y)
instance_of (GNS, FS, graph) <-
instance_of (G.NS, set_of_X) , instance_of

(G.ES, set_of_Y),
attribute (Y, A, X), attribute (Y, B, X), attri

bute(Y,C,float) .
w_graph:method(w_path,P:set_of_Y,S:X,

T:X,W:float,L:int)

G.w_path(P,S,T,W,L) <
(3 E) (3 A) (3 B) (3 C)

www.manaraa.com

Automatic Program Synthesis and Reuse

mernber_of(E,G.ES), (E.A=S), (E.B=T),
(P= [E]), (W=E.C), (L=l).

G.w_path(P,S,T,W,L) <-
(3E) (3A) (3B) (3c) (3Pl)(3Wl)(3Ll)
set_of_edge(Pl), integer(Ll), float (Wl) ,
mernber_of(E,G.ES), (E.A = S),
G.w_path(Pl,E.B,T,Wl,Ll), (P = [Elpl]),
(W = E.C + Wl), (L = Ll + 1) .

G.shortest_path(P,S,T,W,L) <
G.w_path(P,S,T,W,L),
-((3 P 1) (3 W 1) set_of_edge(Pl), float (Wl) ,
G.w_path (Pl, S, T, Wl, L), (Wl < W))

To make the example more interesting, let us assume that a connection
between two cities is restricted to either one or two flight segments. In
addition we assume that connection is interested only in computing the
fare for a connection between two cities. Note that with this, the number
of arguments associated with the predicates w_path and connection are
different.

class(city,state:string)
class(flight, source:city, destination: city,

fare: float)
class(airline,cs:set_of_city,fs:set_of

_flight)
airline:method(connection,C:set_of_flight,

S:city,T:city,Fare:float)

A.connection(C,S,T,Fare) <- (3 F)
mernber_of(F,A.fs), (F.source = S), (F.desti

nation = T),
(C = [F]), (Fare = F.fare).

A.connection(C,S,T,Fare) <- (3H) (3F)
member_of(F,A.fs), (F.source = S),
mernber_of(H,A.fs), (H.source = F.destina

tion) ,
(H. destination = T), (Fare = F. fare + H. fare) .
A.cheapest_fare(S,T,Fare) <
A.connection(C,S,T,Fare),
- (3 C 1) (3 F) set_of_flight (Cl) , float (F),
A.connection(Cl,S,T,F), (F < Fare)).

223

www.manaraa.com

224 Chapter 8

The shortest_path can be used to solve the problem of cheapest
_fare:

1. The object Acs.ts forms a w _graph object. This can be proved
by the following substitutions:

A. fs/G.ES
A.cs/G.NS
city /X
flight/Y
source/A
destination/B
fare/C

Acs.fs/G

Since

airline (A) ->
set_of_flight (A. fs) ,
set_of_city(A.cs)

the following can be established at schema level [Recall that when
ever an assertion instance_of(a,b) is made in Ls, the assertion bra) is
made in Lo and vice versa]:

instance_of (A. fs, set_of_flight) ,
instance_of(A.cs,set_of_flight)

Consequently

airline(A), attribute(flight,source,city),
attribute(flight,destination,city), attri-

bute(flight, fare, float) ->
w_graph (Acs . ts)

2. The predicates w _path and shortest_path can be instantiated
according to the preceding instantiations:

Acs.fs·w_path(P,S,T,W,L) <-
(3E) mernber_of(E,A.fs), (E.source=S), (E.des

tination = T) ,
(P= [E]), (W=E.fare), (L=l).

Acs . fs. w_path (P, S, T, W, L) <-
(3E) (3Pl) (3Ll) (3Wl)
mernber_of(E,A.fs), (E. source = S),
A.w_path(Pl,E.destination,T,Wl,Ll), (P =

[Elpl]) ,

www.manaraa.com

Automatic Program Synthesis and Reuse

set_of_edge(Pl) , float (WI) , integer(Ll),
(W = E.fare + WI), (L = Ll + 1).

Acs . is' shortest_path (P, S, T, W, LL) <
Acs.is.w_path(P,S,T,W,L), (L <= LL)
-((3Pl) (3Ll) (3Wl)
set_of_edge(Pl) , float (WI) , integer (Ll) ,
Acs . is'w_path (PI, S, T, WI, Ll), (Ll <= LL), (WI <

W))

3. It can then be proved that

225

A.connection(C,S,T,Fare)
(P,S,T,W,l)

->

with the following set of substitutions from the first law associated
with A:connection:

SiS
TIT
FIE
C/P

Fare/W

It can also be proved that

A.connection(C,S,T,Fare)
(P,S,T,W,2)

->

with the following set of substitutions from the second law associ
ated with A.connection:

SiS
TIT
FIE
[H) I PI
H.Fare/Wl
Fare/W
l/Ll
211

4. Similarly it can be proved that

Acs . is'w_path (P, S, T, W, 1) -> A. connection (C,
S,T,Fare)

with the following set of substitutions in the first law associated
with A.connection:

SiS

www.manaraa.com

226 Chapter 8

TIT
ElF
PIC
W/Fare

And it can be proved that

Acs • fs' w_path (P, S, T, W, 2) -> A. connection
(C,S,T,Fare)

with the following set of substitutions in the second law associated
with A:connection:

SiS
TIT
ElF
Pl I [H]
W1/H.Fare
W/Fare

5. Based on Steps 2 and 3 and Section 3.1, we conclude that

A. connection (C, S, T, Fare) <-> Acs , fs' W
_path(P,S,T,W,l) II

Acs , fs .w_path(P, S, T, W, 2)

Subsequently the following can be concluded

Acs • fs .shortest_path(P,S,T,W,2) <-> A.cheap-
est_fare(C,S,T,F)

This is because

A. connection (C, S, T, Fare) <-> Acs , fs' w_path (P,
S,T,W,L), (L <= 2)

Example 8.6. As another example consider the following two versions
of sort. Note that syntactically they look quite different.

Version I

set_of_integer:method(sort,B:set_of
_integer)

A. sort (B) <- A.permutation (B) , B. sorted () .
[] . sorted () .
[HIT] .sorted() <- -((3 X) member_of (X,T) , (X <

H)), T.sorted().

www.manaraa.com

Automatic Program Synthesis and Reuse

Version 2

set_of_integer:method(sort,B:set_of
_integer)

set_of_integer:method(sorted' ,B:set_of
_integer)

A.sort(C) <- A.permutation(B) , B.sorted' (C).

[] .sorted' ().

[HIT] .sorted' () <- [HIT] .sorted_l(O).
[HIT] . sorted_l (N) <- (N <= H), T. sorted_l (H) .

It can be proved by induction that [HIT].sorted() -> [HIT].sorted
_1(0) and therefore [HIT].sorted() -> [HIT].sorted'(O) as follows:

1. It is trivial that [).sorted() -< [].sorted_1(O).
2. Assume that [HI71sorted() -> [HI71sorted_1(O) (the Hy
pothesis). Now the following can be proved

[H'I[HIT]].sorted() -> -((3 X) member_of (X,

[HIT]), (X <= H')) ,
[HIT] . sorted () .

From our hypothesis, the preceding statement, and since
[HI71sorted_1(N) -> (N <= H), T.sorted_1(H):

[H'I[HIT]] . sorted ()
-> (H >= H'), [HIT]. sorted () .

-> (H >= H'), [HIT]. sorted_l (0) .

-> (H >= H'), (0 < H) , T. sorted_l (H) .

-> (0 < H), (H >= H') , T. sorted_l (H) .
-> (0 < H), [HIT]. sorted_l (H') .

-> (0 < H), [HIT]. sorted_l (H') .

-> [H'I [HIT]] . sorted_l (0) .

Similarly we can prove that [HI71sorted'() -> [HI71sorted(O) and
conclude that [HI71sorted' () <-> [HI71sorted(O).

PROBLEMS

227

1. Extend the c+ + class declaration language so that a class declaration
includes functional specifications. To do this consider incorporating the set
constructs described in Section 7.2.

www.manaraa.com

228 Chapter 8

2. Derive a transformation mechanism that can be used to transform a c+ +
class declaration into an object-oriented logic system.

3. Using either the extended c+ + class declaration language or an object
oriented logic system to declare the abstract class integer_set and the functional
specification for a set-oriented method find_minimum, which finds the minimal
member in an integer set.

4. Based on Problem 3 and declarations for the class flight and the class
airline as described in Section 8.4, write a specification for the method find
_cheapest, which finds the cheapest fare among all direct flights between two
cities for one airline. Prove or disprove that the method find_cheapest can be
solved by find_minimum.

REFERENCES

I. Balzer, RIEEE Transactions on Software Engineering SE·ll:ll, 1257-1268 (Nov. 1985).
2. Barstow, D. "Artificial intelligence and software engineering." Proc. of9th International Confer

ence on Software Engineering (1987), pp. 200-211.
3. Manna, Z., and Waldinger, R ACM Transactions on Programming Languages and Systems 2.1,
90-121 (1980).

4. Dershowitz, N. In Machine learning: An artificial intelligence approach, vol. 2 (Michalski, R.,
Carbonell, J., and Mitchell, T., eds.) (Morgan Kaufmann, San Mateo, CA, 1986), pp. 395-423.

5. Barstow, D. In Machine intelligence. vol. 10 (Hayes, I. E., Michie, D., and Pao, Y-H., eds.)
(Wiley, New York, 1982).

6. Smith, D. R Artificial Intelligence 27:1, 43-96 (1985).
7. Broy, M., and Pepper, P. IEEE Transactions on Software Engineering 7:1, 14-22 (Jan. 1981).
8. Feather, M. Survey and classification of some program transfonnation approaches and tech
niques." Working Conference on Program Specification and Transformation (Tolz, Federal
Republic of Gennany, Apr. 1986).

9. Partsch, H., and Steinbruggen, R ACM Computing Surveys 15:3, 199-236 (Sept. 1983).
10. Bauer, F., Bray, M., Gnatz, R, Hesse, W., Krieg-Bruckner, B., Partsch, H., Pepper, P., and
Wossner, H. ACM SIGPLAN Notices 13:12, 15-24 (1978).

II. Smith, D., Kotik, G., and Westfold, S.IEEE Transactions on Software Engineering SE-ll:ll,
1278-1295 (Nov. 1985).

12. Manna, Z., and Waldinger, R IEEE Transactions in Software Engineering SE·5:4, 294-328
(July 1979).

13. Pressburger, T., and Smith, D. In Software engineering environments (Brereton, P., ed.) (Ellis
Horwood, England, 1988).

14. Boyle, 1., and Muralidharan, M. IEEE Transactions on Software Engineering SE·IO:5, 574-588
(Sept. 1984).

IS. Cheatham, T. IEEE Transactions on Software Engineering SE·IO:5, 589-594 (Sept. 1984).
16. ClP Language Group. Lecture notes in computer science, vol. I: Munich project CIP (Spring
Verlag, New York, 1984).

www.manaraa.com

Automatic Program Synthesis and Reuse 229

17. Bauer, F., Moller, B., Partsch, H., and Pepper, P. IEEE Transactions on Software Engineering
15:2,165-180 (Feb. 1989).

18. Schach, S. R. Software engineering (Aksen, Homewood, IL, 1990).
19. Stroustrup, B. c++ programming language. 2d ed. (Addison Wesley, Reading, MA, 1991).
20. Dershowitz, N. ACM Transactions on Programming Languages and Systems 7:3 (July 1985)
446-477.

21. Meyer, B.IEEE Software. 50-64 (Mar. 1987).
22. Prieto-Diaz, R., and Freeman, P. IEEE Software 4, 6 (Jan. 1987).
23. Biggerstaff, T. 1., and Perlis, A. J., eds. IEEE Transactions on Software Engineering SE-I0:5
(Sept. 1984) 474-477.

24. Burton, B., Aragon, R. W., Bailey, S., Koehler, K. D., and Mayes, L. A. IEEE Software 4:4, 25
(July 1987).

25. Estublier, B. "Experience with a database of programs. Second Software Engineering Symposium
on Practical Software Development Environments (Palo Alto, CA, Dec. 1986), pp. 84-91.

26. Kaiser, O. E., and Oarian, D.IEEE Software. 4:3, 17-24 (July 1987).
27. Wood, M.; and Sommerville, I. In Software Engineering Environments (Brereton, P., ed. (Ellis
Horwood, England, 1988).

28. Dillistone, B. In Software engineering environments (Brereton, P., ed.) (Ellis Horwood, England,
1988).

29. Nishida, F., Takamatsu, S., Fujita, Y., and Tani, T. IEEE Transactions on Software Engineering
17:9,853-871 (Sept. 1991).

www.manaraa.com

9

Program Verification and Testing

Once a program is written, its correctness with respect to the specification has to
be verified or validated. The theory of program verification stems from the de
sire to prove formally that a program is correct, based on written code and
requirements specification. In general two approaches are proposed for formal
program verification-one based on theorem proving and one based on symbolic
execution.

If formal program verification cannot be performed, the program can be
tested by test cases, so that the program's outputs are compared to expected
outputs. There are in general two approaches to testing: black box and white box.
Black box testing involves looking at the application as if it were a box whose
internal workings are hidden from the outside world. It involves applying input
commands to the program, after which the program's response is checked against
the software specifications. In essence this type of testing attempts to simulate the
activities of an actual system user.

White box testing on the other hand assumes that the internal structure of the
program is known, so testing is performed against the structure. Approaches to
white box testing fall into two categories: one based on structural coverage
(structural testing) and one based on potential errors (error-based testing). Struc
tural testing techniques assure that certain structural coverage, such as all pos
sible paths in a program, are tested at least once with appropriate test cases.
Error-based testing techniques focus on three major types of errors that may
occur in a program: missing path errors, computational errors, and domain
errors. Missing path errors occur when some conditional branches are acciden
tally omitted from the program. Computational errors result when incorrect com
putations, such as multiplication, are mistakenly replaced by an addition. A
domain error occurs if some condition in an IF statement is incorrect, such as a
< operator, is mistakenly replaced by a > operator. Unfortunately no testing
strategy so far proposed can cover all three types of errors. For example missing
path errors and domain errors clearly cannot be detected by a testing strategy
derived simply from the paths in a program.

Chapter 9 first discusses the basic approaches to formal program verification
(Section 9.1). Subsequently it introduces the primary approaches to program
testing: black box testing (Section 9.2), structural testing (Section 9.3), and error-

23/

www.manaraa.com

232 Chapter 9

based testing (Section 9.4). Section 9.5 overviews approaches to automatic test
case generation. Section 9.6 discusses problems and some possible solutions to
test and debug distributed programs. Finally, Section 9.7 discusses some metrics
and techniques for measuring the quality of a software system.

9.1. FORMAL PROGRAM VERIFICATION

Given a program, its functional specification can be verified with an au
tomatic theorem prover. An acceptable approach to formal program verifica
tion involves associating an assertion to each arc in a flowchart such that if
the assertion P associated with the entrance arc of an action 'Tl' is true before
'Tl' is executed, then the assertion R associated with the exit arc of 'Tl' is true
after 'Tl' is executed. The theorem prover can proceed statement by statement
to verify that the assertion at the output arc of each statement is true accord
ing to the assertion at the input arc. The theorem prover can also proceed
backward.

A N in {l, 2, ... }

L = N

B

S = 0

o and S = y[L+l)+ ... +y[N)
Yes

L = 0 and S = y[l)+ ... +y[N)

o and S = y[L)+ ... +y[N)

s = S + y[L]

L <= Nand S = y[l)+ ... +y[Lj

G L <= N+l and S = y[l)+ ... +y[L-lj

Figure 9.1. A flowchart. Reprinted with pennission from Ref. 1. (c) 1991, Aksen Associates.

www.manaraa.com

Program Verification and Testing

Example 9.1. (Ref. 1) Consider the following program segment:

L = Ni

S = Oi
while (L >= 0) {
S = S + Y [L] i

L--i
}

The preceding flowchart shows a set of assertions associated with
the program statements; these assertions can be proved as follows:

1. The assertion at point A corresponds to the initial state of the
program segment.

2. The assertions at points B and C are trivial, since they are
directly produced by corresponding statements.

3. The assertion presented at point D is a loop invariant. This
can be proved by induction as follows:

Base: L = 1, N > 1 => L::5 N + 1, S = 0
Hypothesis: L = LO, 1 ::5 LO::5 N + 1 => LO::5 N + 1, S = y[1]

+ ... + y[LO - 1]
Proof: At H: LO = N + 1, S = y[1] + ... + y[N], based on

Hypothesis and LO > N
At E: LO ::5 N, S = y[1] + ... + y[LO - 1], based on Hypothe

sis and LO < N
At F: LO::5 N, S = y[1] + ... + y[LO], based on E and S = S

+ y[LO]
At G: LO ::5 N + 1, S = y[1] + ... + y[LO - 1], based on F and

LO = LO + 1

The program should terminate properly, since LO is incremented
during each loop, and it is bound by N + 1.

233

Another approach to formal verification, referred to as symbolic execution in
the literature, first assumes a symbol value for each variable in a program. These
values then designate the state of the program. Subsequently program statements
are executed in sequence, and the state of the program changes according to
decisions made and actions taken along the path traversed. Then this approach tries
to prove that the output specification is indeed satisfied along each possible path
that could be executed by the program. Example 9.2 illustrates this approach.

Example 9.2. (Ref. 2) Consider the following program segment that
sets a variable x to its absolute value:

if (x < 0) x = -Xi

www.manaraa.com

234 Chapter 9

Assume the precondition for the program segment is

x == y

Also assume that the postcondition (i.e., the condition to be verified) for
the program segment is

(x> 0) && ((y == x)ll(y == -x))

To start symbolic execution, the initial state is set to:

{x is x, y is Y}

where X and f are two symbolic constants. Substituting these into the
program precondition, the initial path condition is {(X = = Y)}. There
are only two paths in the program, depending on whether X is negative
or positive. Assuming X is negative, the assumption is added to the path
condition and it becomes

state = {x is X, y is Y}, path condition = (X == Y)

&& (X < 0)

Next the statement x = -xis executed, thus changing the state and
path condition to:

state = {x is -X, y is Y}, path condition = (X ==

Y) && (X < 0)

Now the state can be substituted into the postcondition to obtain

(-X>O) && ((y==x)II(Y== -X))

which is apparently true based on the path condition. On the other hand,
if the other path is followed [i.e., if (x < 0) is false], the state remains
unchanged, but the path condition becomes

path condition = (X == Y) && - (X < 0)
Based on the state, Le., {x is X, y is f}, the postcondition becomes

(X> = 0) && ((Y == x)II(Y == -X))

which is again true based on the path condition. At this point, both paths
have been verified and therefore the program is proved correct.

Although formal verification works on simple programs, it suffers from the
complexity encountered in most theorem-proving systems. Approaches have
been proposed to reduce the size of search space; these include using domain
knowledge and allowing human interactions. Surveys of existing work on pro
gram verification are found in Refs. 3-5. Due to its cost, formal verification has
been employed for only small and highly critical programs, such as communica
tion protocols6•7 and reusable data-type verifications.s

www.manaraa.com

Program Verification and Testing

9.2. BLACK BOX TESTING

235

In general black box testing can be perfonned simply by taking all possible
combinations of input variables. It is however clear that this approach is imprac
tical. Therefore the idea of boundary value analysis was proposed, based on the
observation that a number of equivalence classes of inputs can be established, so
that as long as one test case of an equivalence class works properly, it is likely
that other cases of the same class also work properly. It is not uncommon to find
that such equivalence classes can be fonned by first splitting the domain and its
complement of each input variable into a number of subranges followed by
taking the Cartesian product of such subranges. Experience has also shown that if
a test case is chosen to be on or to one side of the boundary of an equivalence
class, the chance of detecting a fault is usually higher.

Unfortunately there are no universal rules for dividing an input variable into
subranges, the rules-of-thumb are

• If the domain of an input variable x is (R I , R2), five subranges can be
fonned: x < R I , X = R I , R I < X < R2, X = R2 and x > R2•

• If the domain of an input variable x is a set A, two subranges can be
fonned: A and -A (i.e., the complement of A).

9.3. STRUCTURAL TESTING

Structural testing is a type of white box testing whose test cases are derived
from the structure of a program. The following strategies have been suggested.

Statement Coverage: Requires a set of test cases to be run so that every
statement of the program is correctly executed.

Branch Coverage: Requires a set of test cases to be run so that every branch
of the program is tested as least once; some variations are discussed in
Ref. 9.

Path Coverage: Requires a set of test cases to be run so that every path of
the program is tested. to Since the number of paths could explode exponen
tially, a number of approaches can be taken:

• Boundary interior path testing 11: Groups of paths are fonned so that
paths in the same group differ only in the number of times they iterate
on some loops. Two classes of paths in the same group are then consid
ered for each loop: Those entering the loop but not iterating it (bound
ary tests) and those iterating the loop at least once (interior tests).

www.manaraa.com

236 Chapter 9

Among the boundary tests, those following different paths are chosen to
execute; among the interior tests, those following different paths during
the first iteration are chosen to execute.

• Structural path testing l2 : Similar to boundary interior path testing.
Groups of paths are formed and executed according to the same criteria.
Subsequently paths in the same group that do not iterate more than k
times, where k is usually a small number, are executed.

• Linear code sequence and jump13: Tests each linear code sequence and
jump (LCSAJ), where an LCSAJ is a sequence of consecutive state
ments, starting at an entry point or after a jump and terminating at a
jump or an exit point.

• 2-dr interaction testing l4 : This approach and the following are based on
data flow analysis. A 2-dr interaction is defined as a path that begins
with the definition of a variable and ends at a use (reference) to the
variable; the variable is not redefined along the path. This approach
requires all 2-dr interactions to be tested.

• data flow testing strategies l5 : A distinction is made between a variable
used in a computation (c-use) and a variable used in a predicate (p-use).
The six strategy class members are

All-uses strategy: Each interaction between a p-use or a c-use and
its definition is tested.
All-defs strategy: Each interaction between a definition and a c-use
or a p-use is tested.

- All-p-uses strategy: Each interaction between a definition and a
p-use is tested.

- All-c-uses/some-p-uses strategy: Each interaction between a defi
nition and a c-use is tested; some interactions between a definition
and a p-use are tested.

- All-p-uses/some-c-uses strategy: Each interaction between a defi
nition and a p-use is tested; some interactions between a definition
and a c-use are tested.

- All-du-paths strategy: Each interaction between a p-use or a c-use
and a definition that reaches it is tested along all cycle-free paths.

References 16-18 compare the preceding strategies. A more detailed discussion
of testing techniques are found in Refs. 19 and 20. As discussed earlier, any
structural testing strategy is insufficient for detecting domain errors or missing
path errors.

Example 9.3. The following program was used to compute the grades
for a class of students:

www.manaraa.com

Program Verification and Testing

#include(stdio.h)
#define NO_GRADES 12
#define NO_STUDENTS 250
#define NO_RANGE 7
struct student_record {
char name [20] ;
char ssn[10];
int score [NO_GRADES] ;
float avg;
int section;
char grade [3] ;

} students [NO_STUDENTS] ;

char letter [NO_RANGE] [2] = {"A" , IIA-" , "B+ II ,

"B", liB-", "C+", lie"};
float weight [NO_GRADES] = {O. 02727,0.02727,

0.02727,0.02727,0.02727,0.02727,0.02727,0.02727,
0.02727,O.02727,O.3,O.4};
float cut_off [NO_RANGE] = {90.0, 80.0, 70.0,

60.0, 50.0, 40.0, 30.0};
int bucket [NO_RANGE + 1] ;

main()
{
FILE *fp;
char number [10] ;
char number[100], fname[100];
int student _count, score, count _nz, i, j ;
float sum, sum1, avg;

/*** Initialization ******/
for (i = 0; i < NO_RANGE +1; i++) bucket [i]

= 0;
for (i = 0; i < NO_STUDENTS; i++)
{
for (j = 0; j < NO_GRADES; j++)
students[i] .score[j] = 0;
students[i] .avg = 0;
students[i] .section = 0;

}
count _nz = 0;
sum = 0;
i = 0;

237

www.manaraa.com

238 Chapter 9

/***** Read student data ***** /
fp = fopen(HrosterH,HrH);
while (fscanf(fp,H%s %s %dH, students [i] .ssn,

students[i] . name, &(students[i] .section)) != EOF)
i++;
fclose(fp);
student_count i; /**** student count

******/
for (i = 0; i < student_count; i++) /***** for

each student * * * * /
{
for (j = 0; j < NO_GRADES; j++) /***** for

each homework* * * /
{
fname [0] = ' '; / * * ** compose the name of

the score file * * * /
strcat(fname,Hhw/ H);
sprintf(number,H%dH,j + 1);
strcat(fname,number);
strcat(fname,H/H);
strcat(fname,Hxgrade.H);
sprintf(number, H%d H, stu-

dents[i] .section);
strcat(fname,number) ;
/ * * *** obtain grade wi th a 1 inear search

****/
fp = fopen(fname,HrH);
if (fp == NULL)
printf(HERROR OPENING GRADE FILE

%s!O,fname);
while (fscanf(fp,H%s%s%dH,ssn,student,

&score) ! = EOF)
{
if(strcmp(ssn,students[i] .ssn) 0)
{

}

students[i] .score[j]
break;
}
}
fclose (fp) ;

score;

www.manaraa.com

Program Verification and Testing

/***** calculate the average for the student
*****/

sum1 = 0;
for (j = 0; j < NO_GRADES; j ++) sum1 +=

(students [i] . score [j]) * weight [j] ;
students[i] .avg = sum1;
/**** if the student got a in final ****/
if ((students [i] . score [NO_GRADES - 1] == 0)

&& (students[i] .avg != 0))
{
strcat(students[i] .grade,"F");
(bucket [7]) ++;

}
else
{
count_nz++; /**** count_nz keep track of

#students who
got non-zeros in final
*****/

sum = sum + sum1; /*** update total sum
****/

/****** compute letter grade **** /
if (sum1 >= cut _off [0])
{
strcat(students[i] .grade,"A+");
(bucket [0]) ++;

}
for (j = 1; j <NO_RANGE; j++)
if((sum1 >= cut_off[j]) && (sum1 < cut

_off[j-1]))
{
strcat(students[i] .grade,letter[j]);
(bucket [j]) ++;
}
if (sum1 < cut_off [NO_RANGE])
{
strcat(students[i] .grade,"F");
(bucket [7]) ++;
}

}
}

239

www.manaraa.com

240 Chapter 9

fp = fopen (" fscore" , "W ") ;

for (i= 0; i < student_count; i++)
{
if (students[i] .avg 1= 0)
{
fprintf (fp, "%9s %15s %d", students [i] . ssn,

students[i] . name, students [i] .section);
for (j = 0; j < NO_GRADES; j++)fpr-intf(fp,"

%d3",students[i] .score[j]);
}
}
fclose (fp) ;
avg = sum/ count _nz;
printf(" = = = = = = = = = = = = = = = = = =

0) ;

printf("THE NUMBER OF STUDENTS IS %dO,count
_nz) ;
printf (liTHE AVERAGE IS %fO, avg) ;
printf("0);
printf (11# students who get A+: %dO, bucket [0]) ;
for (j = 1); j < NO_RANGE - 1; j++)
printf("# students who get %s: %dO,letter[j

1] ,bucket [j]) ;
printf("# students who get F: %dO,bucket[NO

_RANGE - 1]) ;
}

The flowchart for the program follows.

j i = between cut_off [i J
and cut_off[i-ll

www.manaraa.com

Program Verification and Testing

No File

Final

Grade

No

For All Students Do

For All Grades Do

Find Grades

No

241

is not 0

In order to develop test data, the following directories/files need to be
created

• Roster file with each student's social security number, name
and lecture section.

• hw directory with 1,2 12 directories under it, where each

www.manaraa.com

242 Chapter 9

directory hw/i, 1 :5 i:5 10, stores the scores of the ith home
work; the directory hw/ll stores the scores of the midterm
examination; and the directory hw/12 stores the scores of the
final examination.

• In each of these directories, two files: xgrade.l and xgrade.2
(for two lecture sections 1 and 2, respectively).
• Each filexgrade.xxx must have student's ssn, name, and score.

Test data for some testing strategies can be developed as follows:

Basic Path Coverage: As shown in the preceding flowchart, the
following basic paths can be identified: (1) SABA, (2) SACDEA, (3)
SACDEFHLS, (4) SACDEGILS, (5) SACDEGJ1LS, (6) SACDEGJzLS,
(7) SACDEGJ3LS, (8) SACDEGJ4LS, (9) SACDEGJsLS, (10) SAC
DEGJr,LS, (11) SACDEFHLM, (12) SACDEGILM, (13) SACDEGJ1LM,
(14) SACDEGJzLM, (15) SACDEGJ3LM, (16) SACDEGJ4LM, (17)
SACDEGJsLM, and (18) SACDEGJr,LM.

Equivalence Partitioning and Boundary Value Analysis: For each
homework the complete range of inputs is Istudentsl X Igradesl, where
students is the set of all possible students (0-250) and grades is the set
of all possible grades (0-100). The Cartesian product (X) of the two
sets results in 250* 10I possibilities. Considering 12 homeworks, the
total number of test cases is (250* 101).IZ With boundary value analy
sis, the following numbers of students can be chosen: 0, 250, and any
value between 0-250 (say, 125). Similarly the following grades should
be chosen: 0, 100 and any value between 1-100 (say, 50).

9.4. ERROR-BASED TESTING

While structural testing strategies approach testing based on program struc
tures, error-based testing strategies require test cases to be developed according
to the type(s) of errors that may be introduced into a program. One typical error
based testing strategy is domain testing.zl It is a type of white box testing
designed specifically for locating domain errors.

A domain is simply a set of defined inputs that cause a certain program
control flow to occur. A unique program path and a unique program control flow
correspond to each domain. In the domain-testing method, the domain itself sets
up the simulation input for each path to be tested. All control is performed
through a combination of predicates, also known as the path condition. These
consist of Boolean operators (such as AND and OR) and relational comparisons
(such as >, <, :5, 2::, =, and #). These predicates can easily be found in any
program inside of an IF THEN ELSE construct. The THEN clause constitutes one

www.manaraa.com

Program Verification and Testing 243

possible path, and the ELSE clause specifies another. For example consider the
following program segment21 :

[lJ: scanf ("%d%d", &i, &j);
[2J:if(i<=j+1)k=i+j 1;
[3J: elsek=2i+1;
[4]: if (k >= i + 1) n = i + 1;
[5 J : else n = j - 1;
[6J: if (i == 5) m = 2n + k;
[7J: elsem=n+2k-1;
[8J: printf ("%d" ,m);

The first path flow decision to be made is in Statement 2, if<= j + 1. There
is only one path interpretation of this predicate, since both i and j are input
variables read in from the user. Therefore Statement 2 is executed depending on
the values of i and j. The second path flow decision in Statement 4, ifk > = i + 1,
has two interpretations because k is not an input variable but receives its value
from the previous path control block. If i <= j + 1 in Statement 2 is true, then
Statement 4 is interpreted as if i + j - 1 >= i + 1 (to simplify j >= 2).
Otherwise if i < = j + 1 in Statement 2 is false, then Statement 4 is interpreted as
if2i + I >= i + 1 (to simplify i >= 0).

Since the domain is a set of inputs, there is some definition about how the
domain appears in relation to the whole set of real numbers. We assume that all
variable types, including integers, strings, characters, etc., can be described or
converted into floating point numbers. Therefore every domain has its own
border segments, which in tum are determined by the domain and the types of
operator used. For example a closed border segment is determined by an equality
operator (= =), a less than or equal to operator « =), or a greater than or equal
to operator (>=). An open border segment is determined by a nonequality
operator (#), a less than operator «), or a greater than operator (».

One of the first assumptions in the domain-testing process is to consider
only linear predicates. This makes the testing process easier to understand and
much simpler to implement. Another assumption is to ignore the phenomenon
known as coincidental correctness. This occurs when an incorrect input set
coincidentally makes its way through the program control path to produce the
correct output. The number of test points situated in the domain however can be
determined by the tester. Usually it is preferable to have more test points placed
near or precisely on the domain border itself, since these areas are more prone to
domain errors. Other assumptions to make the domain-testing process more
efficient involve excluding loops (or loops with indefinite iteration), subroutines,
functions, and arrays. Of course these are common in everyday practice; in this
discussion they would complicate the central idea behind domain testing.

To understand the domain and the input set that it contains graphically, a

www.manaraa.com

244 Chapter 9

diagram called the input-space-partitioning structure was devised. The number of
input variables in a program determines the dimensionality of the structure. For
instance a program with one variable defines the structure of a single number line.
Two variables define a planar structure; three variables define a solid structure. As
the number ofvariables increases, the complexity of the input space also increases.
For simplicity let us envision a two-variable, two-dimensional graph. Predicates
involving the inequalities describe aplane, where the edges represent the boundaries
of the domain. An equality predicate can simply be described as the domain of a
single line. To explain a nonequality predicate, two domains are required. Instead of
presenting the predicate as x "" y. two predicates x < y and
x> y achieve the same representation and easily divide the original domain in half.
For example Figure 9.2 shows a two-dimensional input space based on the
simple program described earlier in this section. In Figure 9.2. eight regions are
identified, andeach region is labeledwith three lettersC\C2C3 , whereC;, I :5 i:5 3, is
T if the ith condition is true and E otherwise.

Note that the paths EET and TET are not possible due to the logic of the
program. As mentioned previously, Statement 2, if i < = j + I, has only one
interpretation. Therefore its visual representation on the structure is a single line
dividing the space into two exclusive domains (shown as the solid diagonal
border I across the entire space). Since Statement 4, k >= i + 1, had two
interpretations, its visual representation is two discontinuous lines (II and III in
Figure 9.2) breaking up the domain space. Statement 6, if i == 5. has only one
interpretation. Since an equality operator is used within the predicate, the visual
representation of the domain is the single line IV in Figure 9.2.

When the program itself is considered, it is necessary to establish the errors
types that can occur within it. A program can be simply considered as consisting
of two parts: A set of domains, one for each possible flow path, and a set of
assignments for each of the domains. Therefore the entire program is the set of
domain/assignment pairs that make up its flow path from beginning to end. From
this description of a program, three general types of changes can be made due to
errors uncovered during domain testing. The first is a domain boundary modifica
tion, which occurs when the domain of the domain/assignment pair is altered for

TEE

-8 -6 -4

TIE

ETE

B

Figure 9.2. InpU\ space domain test points. Reprinted with permission from Ref. 21. © 1980, IEEE.

www.manaraa.com

Program Verification and Testing 245

correct output. The second is a domain computation modification, which occurs
when the group of assignments of the domain/assignment pair is changed. The
third is a missing path modification, which occurs when a new domain is created
as a subset of the original domain (from the domain/assignment pair).

In general it is best to use domain boundary modification rather than domain
computationmodification, since it is simpler to change a predicate operator, such as
switching a less than operator to a greater than operator, than change the functions
that refer to an incorrect operator. Therefore using a particular type ofmodification
can simplify the correction process and make the testing procedure more efficient.
Forexample inour sampleprogram segment, assume there is an error in Statement4,
ifk > = i + 1. Ifwe use domain boundary modification, this condition statement is
changed to if k < i + 1. However if we use domain computation modification,
Statement 4 is not changed but assignment Statements 4 and 5 are switched, so that
Statement 4 becomes n = j - 1 and Statement 5 becomes n = i + 1.

Because most domain errors occur near or actually on the domain border, it
is crucial for test points needed in checking the domain to lie in these designated
areas. An on, test point is a point on the domain border itself. An off test point
does not exist on the domain border but rather at some small distance e from the
border segment. By shifting the border segment, then checking to see if the
wrong flow path is taken by a certain domain, we can detect domain errors. For
example in Figure 9.3(a), A and B show correct results, since they are in Domain 1.

02
02

.C

A

01

B (a)

02
...................... c

(b)
A

01

B

Given border
Correct border

Figure 9.3. Three types of border errors. Reprinted with permission from Ref. 21. © 1980, IEEE.

www.manaraa.com

246

TEE

-8 -6 -4

TIE

ETT

jI
ETE ETE

2 4 6 8

Chapter 9

Figure 9.4. Correct input space for a domain error. Reprinted with permission from Ref. 21. © 1980,
IEEE.

But as the border segment passes point C, an incorrect output results, since Point
C should be inside Domain I, and not in Domain 2. In Figure 9.3(b) Point C is
correctly in Domain 2, yet Points A and B show incorrect outputs when the
border passes the correct border segment, thereby placing them inside Domain 1
(the incorrect domain). A third type of shifting combines both Figures 9.3(a) and
(b). This is realized in Figure 9.3(c), where Points A and C are now in their
proper domain, but as the shifting takes place, Point B results in an error by
indicating a diagonal (not horizontal) domain border segment.

Example 9.4. (Ref. 21) Consider two input variables, a two-dimension
al input-space-partitioning structure for the example program segment
in this section. For simplicity the structure has a bounded space where J
is from -5-5 and I is from -8-8. In theory the domain field should
have no limit on its bounds. Assume that Statement 4 reads k >= i + 2.

To select efficient test data points, it is first necessary to examine the
input spacepartitioning structure (Figure 9.4). We would like to select a set
of data points such that each path is taken in the control flow of the given
program. There are three IF-THEN-ELSE constructs within the program
creating three Boolean variable path selectors ranging in values from
ELSE/ELSE/ELSE to THEN/THEN/THEN. Note that the domain of the paths
needed to test the program is not always the complete set of possible path
values but rather a subset. Forexample the pathsTET andEETcanneverbe
achieved by the logic of the program itself. Since the three predicates form
closed border segments, the on test data points reside on the segment, and
the off test points are placed at some distance e near the segment.

The following tables depict the test data selected (for i and)), their
outputs, the appropriate path taken, and expected outputs. If a domain
error exists, the correct output (predetermined by the programmer who
knows the correct functionality of the code) will differ from the output
gained through the current program tested.

www.manaraa.com

i i:l :!l ~ S 2 :::. ~ " l::l
on
T
es
t
D
at
a
P
oi
nt
s

:. I:l
..

J
K

L
M

PA
T
H

K
(c
or
re
ct
)

L
(c
or
re
ct
)

M
(c
or
re
ct
)

~ '" S· 0
0

5
4

8
6

20
T
IT

8
6

20
X
3

2
4

4
11

T
IE

4
1

8
0
-1

-2
-2

-7
T
E
E

-2
-2

-7
5

2
11

6
23

E
T
I

11
6

23
X
O
-3

1
1

2
E
T
E

1
-4

-3
-2

-4
-3

-5
-1
2

E
E
E

-3
-5

-1
2

of
f
T
es
t
D
at
a
P
oi
nt
s

J
K

L
M

PA
T
H

K
(c
or
re
ct
)

L
(c
or
re
ct
)

M
(c
or
re
ct
)

PA
T
H
(c
or
re
ct
)

-.
2

-4
0.
6

-5
-4
.8

E
E
E

0.
6

-5
-4
.8

E
E
E

X
.2

-4
1.
4

1.
2

3
E
T
E

1.
4

-5
-3
.2

E
E
E

X
-2

2.
2

-.
8

-1
-3
.6

T
IE

-0
.8

1.
2

-1
.4

T
E
E

-2
1.
8

-1
.2

.8
-2
.6

T
E
E

-1
.2

0.
8

-2
.6

T
E
E

'"ol:>o, 'I

www.manaraa.com

248 Chapter 9

These points are not the only data that could be used: There could
be a large set of test data points depending on the testers' style. In fact
the off test points in this simple example are not even needed to solve
the domain error, since the on points have already detected the problem
and the error was only a horizontal and vertical shift in the boundary
segments. These tables provide only a guideline for selecting the testers'
input data. Since on test points remain on the border segment while it is
being shifted, there is no change in the path when an error is detected, so
a table column for this trait is not necessary. However when dealing
with off points, which do not reside on the border segment, a shift in the
border segment may put these points inside a new and different domain.
If there is a difference in the points domain from the current program
and the correct program, an error has occurred and the boundary seg
ment must be shifted to its proper position. Only when no differences
are detected in the current and correct program can we say that domain
boundary segments are correct.

Looking back at the example, once the on/off testing points are put
on the input space structure, shifting border segments reveals an incon
sistency in the correctness of the output. Since k originally had two in
terpretations, both dashed segments must be modified. Figure 9.3 shows
domain boundary placements due to domain boundary modification.

Another error-based testing strategy is mutation testing.22 Mutation testing
assumes that if a program is not correct, it is almost correct; that is if a program is
not correct, then it is a mutant of a correct program-it differs from a correct
program only by containing such simple errors as an correct variable in an
assignment statement, an extra loop bound, etc. A mutation-testing process there
fore subjects a program to a sequence of mutation transformations to produce a
number of mutants that differ from the original program slightly. Consider a
program P and a mutant of P, say, P'. Let AlP be the result of applying a test case
t to P, and let Atp' be the result of applying t to P' . IfAtp is not correct but Atp' is,
this indicates a mutation error (i.e., an error resulting from a mutation transfor
mation) occurred and can be identified. The goal of mutation testing is therefore
to construct a set of test cases that differentiate as many mutation errors as
possible.

Example 9.5. (Ref. 23) Consider the following program:

int max (int m, int n)
{
int max;
max = m;
/ / %max = n;
/ / %max = abs (m) ;

www.manaraa.com

Program Verification and Testing

if (n > m) max = n;
/ / %if (n < m) max = n;
/ / %if (n > = m) max = n;
return max;

}

In this program a statement commented out and preceded by a % is a
mutation of the statement preceding it. Consequently four possible mu
tants can be obtained from the original program. The mutational error
obtained from the last mutation [Le., if (n >= m) max = n] cannot be
detected, since it produces the same result as the original program.

9.5. AUTOMATIC TEST CASE GENERATION

249

This method can make the testing process more effective. Some testing
approaches described in the previous sections, such as mutation testing, are
systematic and can readily be automated. Traditionally three types of test data
generators have been proposed: data specification systems, random test data
generators, and pathwise test data generators. A data specification system allows
the programmer to specify properties of the test data; the system then generates
test data from the specifications. Random test generators select random values
from possible input domains. Pathwise test data generators consist of four basic
operations: program graph construction, path selection, symbolic execution, and
test data generation. The symbolic executor accepts symbolic values for some
inputs and algebraically manipulates these symbols according to expressions in
which they appear. These tools perform operations as if the program were exe
cuting. Output values are symbolic expressions that are functions of input sym
bolic variables. Example 9.6 illustrates the use of symbolic execution for test
case generation.

Example 9.6. (Ref. 24) Consider the following program:

void main (void)
{
float a,b,c,x;
scanf("%f%f",&b,&c);
a = b + c;
x = a * c;
if (a <= x) {statement_I}
else if ((b >= l)ll(b <= -1))
{statement _II}
else {statement_III}

}

www.manaraa.com

250 Chapter 9

Assume that symbolic constants B and C are read and assigned to b
and c, respectively. Symbolic path expressions for paths leading to the
execution of statement_I, statement_ll, and statement_Ill are ob
tained as follows:

statement-I: (8 + C) :5 (8 + C)*C
statement-II: «8 + C) > (8 + C)*C) && «8 2= 1) II (8:5 -1))
statement-III: «8 + C) > (8 + C)*C) && (-1 < 8 < 1)

Domains of input data corresponding to different paths can be
derived accordingly (see "Problems").

One problem with test case generation as just described is that it uses
symbolic values in place of variables. Normally this works, but problems may
arise when using arrays. The index of an array may depend on input values, in
which case the value of the array cannot be evaluated beforehand. Reference 25
describes a dynamic test generator that generates test data by data flow analysis,
actual execution of the program, and function minimization. The process takes a
program and the testing criteria as input and generates test data as output. First it
analyzes the program, using the testing criteria to determine which paths to test.
It then executes with sample input the program to traverse a specific path. When
an undesired branch occurs, the branch predicate £1 op £2 is transformed into a
real-valued function F rei 0, based on the following transformations:

Branch Predicate F Relation

EI > E2 E2 - EI <
EI >= E2 E2 - EI <=
El < E2 El - E2 <
EI <= E2 EI - E2 <=
EI == E2 abs(El - E2)
EI != E2 abs(El - E2) !=

The test process then alters the input values to minimize F. When F is
negative, the program takes the correct branch. The test process must rerun the
entire program however to assure that the change in input values does not cause
an improper branch to be taken. The search procedure is a blind search operating
on one input variable at a time in the order that it is input into the program. The
first step applied to the variable is an exploratory search. This is a small alteration
in either direction to see which direction minimizes F the most. The program is
executed with the new input variable and if the program reaches the present
branch successfully, then the new value ofF is tested. IfF has improved, then a
larger jump is made. This process continues until either F becomes negative or

www.manaraa.com

Program Verification and Testing 251

reaches a minimum positive value. If F does become negative, then a successful
set has been found and the program continues execution to the next branch. If F
is still positive at this point, then a new exploratory search is made to see if
further improvement is possible with this input variable. If not, the program
continues by testing the next input variable.

The problem with this method is that it can be very slow, especially if the
best variable to change is at the end of the input list. An improvement can be
made by using an heuristic search based on data flow analysis. The data flow
influence network discussed in Ref. 26 was used to determine which input
variables have the most influence on the branch function F These variables are
tested first instead of in the rigid order imposed by the blind search just de
scribed. This can greatly speed up the process of evaluating the branch function,
which is the most time-consuming part of the process.25

9.6. TESTING AND DEBUGGING DISTRIBUTED PROGRAMS

A traditional way of testing and debugging a program is to execute it with
input, then compare test results with the expected result. If the result differs from
the expected value, then the program is executed again with the same test input to
replay the erroneous execution and collect debugging information. After correc
tions the same procedure is repeated again, and the program is checked for
further errors. This testing and debugging approach is called cyclical debug
ging.27 Unfortunately it does not work satisfactorily for concurrent programs.
Testing and debugging a concurrent program is more complex because of the
following28 :

• Probe effect

• Nonrepeatability

• Lack of a synchronized global clock

The term probe effect refers to the fact that analyzing a system changes its
behavior, so the same result may not be obtained again. Moreover for some
distributed programs, different executions using the same inputs may produce a
totally different set of outputs. In other words the program cannot necessarily
repeat. In addition the absence of a synchronized global clock makes it difficult to
determine the precise order of events occurring in a distributed environment. The
probe effect and unpredictable results are also referred to as nondeterministic
behavior in concurrent programs. One way of finding errors in a nondeterministic
program is to execute deterministic sequences of synchronization commands
within the program.29- 31

Concurrent programs written as large-grain parallel computation units (for

www.manaraa.com

252 Chapter 9

example those written in csp or ADA) have motivated debuggers to shift to
structural testing from a flowchart model of the system.3 ! In this flowchart each
node represents a statement or a collection of sequential statements that are
executed as a block. The flow of control from one block to the next is represented
by an edge. Nodes with multiple exiting edges represent a branch predicate. The
debugger who chooses to employ this tool may use one of various forms of
control-flow- and data-flow-testing strategies, which we discuss later. Three ex
amples of control-flow-testing strategies are path testing, branch testing, and
statement testing. An example of data flow testing is all definition use paths (all
DU paths).

These strategies are defined with respect to the flowchart of a concurrent
program, which we call a collection of concurrency states. In a flowchart pro
gram logic defines paths that may occur during execution, since not all flowchart
paths correspond to executable sequences of statements. Testing strategies previ
ously introduced use the following definitions: H(s) is the complete concurrency
history and E is the set of all pairs (C,C'), where C and C' are concurrency states
and C' is directly reachable from C.

The all concurrency paths criterion is the most impractical among concurren
cy flowchart-testing methods, since it requires every path be covered by the test set,
which is infinite for a nontrivial concurrent system. The all proper concurrency
histories criterion tests all paths of a finite length without duplications, and it may
be the most thorough approach that is realistically possible. A weaker but more
practical approach is the all edges between cc states, which includes every edge in
the concurrency flowchart that transfers control from one node to its successor. The
all cc states criterion simply includes every node in the flowchart.

Example 9.7. (Ref. 31) Consider the csp program that solves the dining
philosopher problem described in Section 5.5 (for simplicity, only two
philosophers are assumed):

PHILl = * [.. during his /her lifetime -> THINK;
room!enter();
fork((i + l)mod 5) !pickup();
fork(i) !pickup();
EAT;
fork((i + l)mod 5) !putdown();
fork(i) lputdown();
room!exit()]

PHIL2 = * [.. during his /her lifetime -> THINK;
room!enter();
fork(i) !pickup();
fork((i + l)mod5) !pickup();

www.manaraa.com

Program Verification and Testing

EAT;
fork(i) lputdown();
fork((i + l)mod 5) Jputdown();
room!exit()]

FORK *[phil(i)?pickup() -> phil(i)?put-
down () ;

*phil((i - l)mod 5)?pickup() -> phil((i
1) mod 5) ?putdown () ;]

ROOM *[(ilo .. 4)phil(i)?enter -> (ilo .
. 4)phil (i) ?exit]

This csp program with five philosophers generates 11 flowcharts,
one for each philosopher, each fork, and the main program itself. For
simplicity we limit our program to two philosophers, which results in
only five concurrency flowcharts.32 A concurrency state table is gener
ated by identifying the next possible concurrency states from both the
preceding code and the five flowcharts, each of which represents an
individually operating process (see the table that follows). Our next step
is to create the concurrency flowchart between the previously defined
concurrency states, as shown in Figure 9.5.

253

State No. Fork (1) Fork (2) Philos (1) Philos (2) Next State

1 up up forkl.up fork2.up 2,8
2 down up fork2.up fork2.up 3,7
3 down down forkl.down fork2.up 4
4 up down fork2.down fork2.up 5
5 up up fork 1.up fork2.up 6,13
6 down up fork2.up fork2.up 3,7
7 down down fork2.up forkl.up
8 up down fork 1.up fork2.up 7,9
9 down down forkl.up fork2.down 10

10 down up forkl.up forkl.down 11
11 up up forkl.up fork2.up 12,17
12 up down fork 1.up forkl.up 7,9
13 up down forkl.up forkl.up 7,14
14 down down fork 1.up fork2.down 15
15 down up fork 1.up forkl.down 16
16 up up forkl.up fork2.up 13,17
17 down up fork2.up fork2.up 7,18
18 down down forkl.down fork2.up 19
19 up down fork2.down fork2.up 16

www.manaraa.com

254 Chapter 9

Figure 9.5. A concurrency graph.

Now we apply some testing criteria to the concurrency flowchart of
the two dining philosophers. The following path sets are defined: Pa = the
set of all paths through the graph, Ph = the set of all paths satisfy
ing the all proper cc histories criterion, Pe = the set all sets of paths
satisfying the all edges between cc states criterion, and Pee = the set of all
sets ofpaths satisfying the all cc states criterion. ThePais defined as the set
of all paths through the concurrency flowchart; it may include infinite
paths, such as (1, 2, 3,4, 5,6, 3,4,5,6, 3 ...). ThePh is defined as the set of
finite-length paths through the flowchart that are valid for the program. An
examplepath forPhis (1,2,3,4,5,6,7). Twoexamplepaths forPeare(5, 6,
7) and (1,2,3,4,5), which are significant because they are notmembers of
Ph; i.e., these two paths are not possible flows ofexecution for the code. An
example path for Pee is (6, 3), which covers testing both Nodes 3 and 6 but
not a proper concurrency flowchart history.

A program's suitability for static concurrency analysis can be determined by
estimating the state space explosion problem. This problem occurs due to the
large number of interprocess interactions, concurrency flowchart edges, and
atomic events. The size of the concurrency flowchart for an application can be
calculated via Taylor's algorithm such that the number of unique concurrency
states is approximately equal to (n/t)(t/2), where n is the total number of state
nodes in all tasks, t is the total number of tasks in the system, and n/t is the
average number of state nodes per task.32 There is software available to generate
and analyze the concurrency flowchart based on the criteria a debugger wishes

www.manaraa.com

Program Verification and Testing 255

to use. The CATS is an example of a tool suite automating the processes of
building the concurrency flowchart and its related histories.3) Obviously the
more paths included by the criteria selected, the longer to process the flowchart.
For an idea of just how fast the concurrency flowchart grows with the size of the
system under test, if we adhered to our original code with five philosophers, the
concurrency flowchart would consist of 1653 nodes and 6130 edges.

Some useful techniques to be employed to simply the test procedure follow:

• Reduced Concurrency Graphs: If a flowgraph can be converted into a
reduced form, then testing becomes simpler. For example all delay state
ments can be neglected if they do not affect the order of task interactions;
a rendezvous can be represented by two nodes instead of three.

• Path Steering: A concurrent program may produce different outputs based
on the same input because the scheduler steered from one state to different
successor states. If there\are two or more possible successor states"and the
scheduler selects the next state arbitrarily, this makes the task of debug
ging difficult. To avoid this situation, it is desirable to have a controllable
scheduler to allows the user to choose a specific rendezvous to be fol
lowed.

See Refs. 28, 33, and 34 for a more detailed discussion of testing and debugging
concurrent programs.

9.7. ANALYSIS TOOLS AND SOFTWARE METRICS

Even if it is determined that a program meets specifications, it is desirable to
analyze the quality of the program so that further improvements can be made.
Section 9.7 describes some basic approaches to system analysis. See Ref. 35 for
discussion of CASE analysis tools.

9.7.1. Static Analysis Tools

These tools analyze characteristics obtained from a program structure with
out executing the program. Statically analyzing programs may include any or all
of the functions listed below:

• Code Auditing: Examines source code to determine whether or not spe
cified programming practices and rules have been followed. This can
include syntax rules, proper use of portable language subsets, and use of a
standard coding format.

• Consistency Checking: Determines whether or not units of program text

www.manaraa.com

256 Chapter 9

are consistent in that they use unifonn notation or tenninology and are
consistent with a specification.

• Cross Referencing: Relates entities by logical names, for example func
tions called by each function, variables used in a function.

• Interface Analysis: Checks interfaces between program modules for con
sistency and adherence to a set of predefined rules; an example is checking
parameters passed between functions.

• Data Flow Analysis: Determines constraints that can be placed on data
values at various points of execution in the source program.

• Error Checking: Detennines discrepancies in the code, such as misspelled
keywords; uninitialized variables; variables set, but not used; isolated
code segments.

• Type Analysis: Checks data names against their types.

• Unit Analysis: Detennines if units or physical dimensions attributed to an
object are correctly defined and consistently used.

Many static analysis tools are available. In UNIX for example Cscope main
tains a symbol cross-reference table that is updated as files are changed. Since
UNIX c compilers do not provide thorough checking, a valuable static analysis
tool known as lint is extremely helpful in ensuring the quality of the source code.
It reports many useful things to the programmer, such as syntax errors the
compiler would have found; functions without a return value; function declara
tions and calls with incorrect number or type of arguments; variables declared,
but not used; unreachable program statements; ill-advisable automatic-type con
versions. Another useful static analysis tool in UNIX is cia. One type of infonna
tion that cia captures is the calling relationship among functions. It stores its
infonnation in a relational database that can be accessed by using its reporting
tools or other database tools. By using graphic tools with cia's reporting tools, a
graph can be generated to describe the calling relationship among functions. The
cia also has many other uses, such as program version comparison; i.e., two
versions of a program can be compared by looking at differences between their
cia databases. This tool also helps search for reusable code, because it provides
infonnation about functions commonly used in the source code.

9.7.2. Dynamic Analysis Tools

These tools collect infonnation from an executing program. They can per
fonn one or more of the following operations:

• Coverage Analysis: Records the amount and type of coverage achieved by

www.manaraa.com

Program Verification and Testing 257

a set of test cases. Coverage is the percentage of code actually tested by a
specific test set. The type of coverage can be branch coverage, statement
coverage, path coverage, etc.

• Tracing: Traces the historical record of program execution. Tracing can be
further divided into path flow tracing, breakpoint flow, logic flow tracing,
and data flow tracing.

• Tuning: Determines which part of a program has been executed the most;
the number of times a statement is executed; the initial, final, and average
value of a variable, the number of times a condition of a branch is true.

• Timing: Reports the actual CPU time associated with a program or its
paths.

• Resource Utilization: Analyzes resources unused by the program.

• Integrity Checking: Similar to integrity constraint checking. It is also
useful in detecting data flow anomalies.

• Constraint Evaluation: Includes generating and/or solving path input or
output constraints to determine test inputs or prove that a program is
correct.

Some dynamic analysis tools available in UNIX include the following:

• lprof' An assembler instrumentation tool to determine how many times
each line of code in a file is executed. It is used to measure statement
coverage.

• nvcc (new verifier for C code): Inserts instrumentation code into a c or
c+ + source file. Instrumentation code generates coverage information.

9.7.3. Software Metrics

Most hardware benchmarks attempt to measure the performance of various
central-processing units (CPUs). Software metrics are benchmarks that attempt to
assess software systems objectively. In general metrics assess software based on
a number of characteristics of interest to developers, namely, clarity, reliability,
maintainability, and efficiency. Using software metrics does not require reading
source code, yet such metrics provide a rapid way of assessing software of
arbitrary length. However like hardware benchmarks, these metrics do not al
ways accurately reflect real-world performance. The following list summarizes
some popular software metrics.36,37

McCabe Complexity Metric: Measures the complexity of the program's

www.manaraa.com

258 Chapter 9

control structure. It is usually denoted asMe and determined by the expres
sion M = # of decisions + 1.

Halstead Program Length Metric: Estimates program length. Three equa
tions are generally used: N = N 1 + Nz, where N 1 is the total number of
operators in the program and Nz is the total number of operands; NH = N I

logz (N1) + Nz logz (Nz); and NJ = logz (N1!) + logz (Nz !), which is
supposedly a more accurate estimate of N.

Program Bandwidth: Average nesting level of the program. A straight-line
program has bandwidth 1; a program with many nested loops has a higher
bandwidth number. A formula for bandwidth is BW = (i * L(i)/(number of
nodes in the program control graph), whereL(i) is the number of nodes at level i.

Other metrics include such basic and simple metrics as number of lines,
number of characters, and number of comments. A variety of tools are available to
measure such software metrics. For example DATRIX38 allows the user to choose
which metrics to use and the valid ranges of values for the metrics. It supports the
following steps for software evaluation based on metric measurements:

• Project Analysis: Runs the project through the DATRIX analyzer.
DATRIX outputs metric values for each function.

• Metric Distributions: Examines the metric value for each function, then
calculates the usual range of values for the project. It then identifies any
function with out-of-range values.

• Percentile Profile: Shows the number of functions falling within the se
lected range ofmetric values. All functions with unusual metric values are
identified and listed.

• Normality Profile: Usually a grouping of individual metrics to form a
composite metric. For instance average bandwidth, number of loops, and
McCabe's complexity metric an be combined into a quality factor called
testability.

• Function Interrelationships: A call graph of total calls to a function versus
total calls from the function versus the frequency count.

Reference 39 contains other software metric surveys.

PROBLEMS

1. Identify a set of paths for the program given in Example 9.3 based on: (a)
statement coverage and (b) branch coverage.

www.manaraa.com

Program Verification and Testing 259

2. Prepare test data for the program given in Example 9.3 based on the set of
paths identified in this example and the two sets of paths identified in Problem 1.

3. Prepare test data for the program given in Example 9.3 based on bound
ary value analysis.

4. For the program in Section 9.4, assume Statement 6 reads (i "" 5).
Develop ON/OFF data points to detect the fault.

5. Based on Example 9.6, draw a two-dimensional structure (taking B and
C as the axes) that shows the domains of input data leading to the execution of
Statements I, II, and III.

6. Consider the following code fragment:

c = 0;
f = c;
while (c < N) {
c++
f=f*c;

}

Sketch a proof for the fragment and verify that it correctly computes N! ifN
E {l, 2, 3, ... }.

7. Discuss if testing can be facilitated by an object-oriented paradigm. For
example is test case generation easier if classes of test cases can be developed? Is
a c+ + program easier to test than an equivalent C program?

REFERENCES

1. Schach, S. R. Software engineering (Aksen, IRWIN, Homewood, IL, 1991).
2. Dannenberg, R 8., and Ernst, G.WIEEE Transactions on Software Engineering SE-8: I, 43-52
(Jan. 1982).

3. Boyle, R, and Moore, 1. Journal of Automated Reasoning 1:1,17-22 (1985).
,4. Proceedings ofVERshop III. A Formal Verification Workshop, 18-21 Feb. 1985. ACM Software
Engineering Notes Special Issue 10:4 (Aug. 1985).

5. Wal1ce, D. R, and Fuji, R U. IEEE Softwar:e 6:3, 10-17 (May 1989).
6. Sunshine, C., Thompson, D., Erickson, R, Gerhart, S., and Schwabe, D. IEEE Transactions on

Software Engineering 8:5, 460-489 (Sept. 1982).
7. Good, D. I. Phi/os. Trans. Royal Society of London 312, 389-409 (1984).
8. Gerhart, S., et al. In Information processing (Lavington, ed.) (North Holland, 1980).
9. Tai, K. C. ACM Software Engineering Notes 14:2, 58-61 (Apr. 1989).
10. McCabe, T. IEEE Transactions on Software Engineering SE-2:4, 308-320 (Dec. 1976).

www.manaraa.com

260 Chapter 9

I I. Howden, W. E. IEEE Transactions on Computer 24:5, 554-559 (May 1975).
12. Howden, W. E. Symbolic testing-design techniques, costs, and effectiveness. NTIS PB-268518,
May 1977.

13. Woodward, M. R, Hedley, D., and Hennell, M. A.IEEE Transactions on Software Engineering
SE-6:5, 278-286 (May 1980).

14. Ntafos, S. C. IEEE Transactions on Software Engineering SE-IO:6, 795-803 (Nov. 1984).
IS. Rapps, S., and Weyuker, E. J. IEEE Transactions on Software Engineering SE-U:4, 367-375
(Apr. 1985).

16. Frankl, P. G., and Weyuker, E. J.IEEE Transactions on Software Engineering SE-14:1O, 1483
1498 (Oct. 1988).

17. Ntafos, S. C. IEEE Transactions on Software Engineering SE-14:6, 868-874 (June 1988).
18. Basili, V. R, and Selby, R W. IEEE Transactions on Software Engineering SE-13:12, 1278-
1296 (Dec. 1988).

19. Beizer, B. Software testing techniques (Van Nostrand Reinhold, New York 1990).
20. Gelperin, D., and Hetzel, B. Communication of ACM, 31:6, 687-695 (June 1988).
21. White, L. J., and Cohen, E. I. IEEE Transactions on Software Engineering SE-6:5, 247-257
(May 1980).

22. DeMilio, R A. Software testing and evaluation (Benjamin/Cummings, Menlo Park, CA, 1987).
23. DeMilio, R, and Offut, A. J. IEEE Transactions on Software Engineering SE-17:9, 900-910
(Sept. 1991).

24. Fairley, R E. Software engineering concepts (McGraw-Hili, New York, 1985).
25. Korel, B. IEEE Transactions on Software Engineering SE-16:8, 870-879 (Aug. 1990).
26. Korel, B., Information Processing Letters 24, 102-107 (Jan. 1987).
27. Lutz, M. IEEE Software, 7:5, 53-57 (May 1990).
28. McDowell, C. E., and Helmbold, D. P. ACM Computing Surveys 21:4 593-618 (Dec. 1989).
29. Carver, R H., and Tai, K. C. IEEE Software 8:2, 66-74 (Mar. 1991).
30. Katz, S., and Peled, D. Distributed Computing 6:2, 107-120 (1992).
31. Tai, K. C., Carver, R. H., and Obaid, E. E. IEEE Transactions on Software Engineering
TSE-17:1, 45-62 (Jan. 1991).

32. Taylor, R. N., Levine, D. L., and Kelly, C. D. IEEE Transactions on Software Engineering
TSE-18:3, 206-215 (Mar. 1992).

33. Cheung, W. H., Black, J. P., and Manning, E.IEEE Software, 7:1, 106-115 (Jan. 1990).
34. Wing, J. M., and Gong, C. Journal ofParallel and Distributed Computing 17: I, 164-182 (1993).
35. Oman, P. W. IEEE Software 7:3, 37-43 (May 1990).
36. Lind, R. K., and Vairavan, K. IEEE Transactions on Software Engineering SE-16:3, 373-388
(Apr. 1990).

37. Cote, v., Bourque, P., Oligny, S., and Rivard, N. Journal ofSystems and Software 8:2, 121-131
(Mar. 1988).

38. Robillard, P. N., Coupal, D., and Coallier, F. Software-Practice and Experience 21:5, 507 (May
1991).

39. Waguespack, L. J., and Badlani, S. ACM Software Engineering Notes 12:4, 52-71 (Oct. 1987).

www.manaraa.com

10

Software Maintenance

Programming is both a tedious and sensitive task. During the development of
large programs, coordination can make the problem even worse. A useful pro
gramming environment eases the task by automating many of the programmer's
routine operations. Such assistance includes automatic configuration manage
ment and version management. Chapter 10 describes approaches to software
maintenance, emphasizing applications of database technologies to managing
programming objects at various levels of abstraction.

Chapter 10 first introduces the different components of software mainte
nance (Section 10.1), then overviews some existing approaches using database
techniques to support software maintenance (Section 10.2). Sections 10.3 and
10.4 discuss the use of the COMPOSE object-oriented database (see Section 7.4)
for software maintenance. In particular Section 10.3 explores various program
ming objects in c+ + that can be involved in queries, integrity constraints, and
triggers. Section 10.4 discusses integrity constraints and triggers in incremental
testing and integrity control. Section 10.5 discusses reverse engineering and
design recovery techniques that can be applied to identify various components of
a software system and to create representations of the system with a higher level
of abstraction.

10.1. COMPONENTS OF SOFTWARE MAINTENANCE

The term software maintenance can be used in a broad sense to cover all
aspects of programming as a software system evolves. l A more specific defini
tion of software maintenance includes two major components: automatic config
uration management and version management. Both components handle changes
made to a software system; consequently the term change management is fre
quently used to cover that aspect in both components.

10.1.1. Configuration Management

A large-scale software system is comprised of many distinct components.
To assure optimal product performance, these components must be arranged in

261

www.manaraa.com

262 Chapter 10

such a way that changes to the system (or system evolution) can be monitored
and do not affect the reliability, integrity, or correctness of that software system.
Configuration management (CM) is formally defined as "the discipline of devel
oping uniform descriptions of a complex product at discrete points in its life
cycle with a view to systematically controlling the manner in which the product
evolves."2 Software configuration management (SCM) is the application of CM
rules and regulations to software systems.

It is very important to realize the differences between software system
configuration and maintenance and hardware system configuration and mainte
nance. Certain principles can be applied to hardware systems but cannot be
carried over to software systems without being modified. In general a hardware
system is well-defined and often is not modified after creation. However because
software systems readily allow modification and are logically more complex,
they are not so concretely defined at the beginning.

10.1.2. Version Management

A version can be a revision or a variation of a programming object. A
revision of a programming object is a new programming object obtained by
revising the old one to improve its performance. Consequently only one revision
survives. A variation of a programming object is usually obtained from the object
because of a different operating requirement. Therefore potentially different
variations of an object can coexist at the same time. Versions may be defined
among different projects, different programs, different segments, and different
functions. Different versions of a program object may be similar in structure with
possibly minor differences. Consequently it is desirable that whenever one ver
sion is changed, and the change is made to a common version among different
versions, the other versions are changed accordingly.

10.2. DATABASE AND SOFTWARE MAINTENANCE

One system whose goal is to control the process of managing different
components of a software system is the Evolution Support Environment (ESE)
system.3 Supporting software evolution involves minimizing the effort required
to develop a new version from existing versions. The ESE system helps software
evolution by maintaining an integrated database on information about software
configuration, life cycle configuration, and version control. Another aim of the
ESE system is to understand the structure and function of a large evolving
system. Hence it is "important to store relationships among software objects,
such as specifications, code and test cases ... "3
This system also provides mechanisms for organizing a program into sub-

www.manaraa.com

Software Maintenance 263

systems, layers, and modules. Some of the features offered in this system are
traceability across the software life cycle, configuration management using a
modular organization of resources, and version support at the systems level.
Traceability is referred to as the capability to access objects based on their
attributes or relationships with other objects. This task lasts throughout the entire
life cycle of the product, including requirement specifications, design specifica
tions, coding, and testing of the software product. Traceability helps assure that
the software system satisfies user requirements. However there may be diffi
culties in dealing with changes to the original specifications. The ESE system
uses the entity relationship model to organize objects and provide traceability
among them. A modular approach to resource organization is undertaken because
groups of software components can be similar and compose layers in a hier
archically designed system. The ESE system also provides the capability of
dealing with different versions of the modules or groups of modules.

The ESE system has the following layers: the ESE kernel, the software
libraries layer, and the applications layer. The ESE kernel provides mechanisms
for creating, deleting, modifying software objects, and maintaining relations
between them. The software libraries layer uses the kernel to organize objects of
different types into a library structure. The applications layer provides various
facilities to the user, for example algorithms that use link information to go from
one object to its related object. This layer may also use facilities provided by
other software tools, such as the C Information Abstract system,4 which is
discussed in detail later. This system automatically derives some of the configu
ration information useful in deriving the ESE system from C source programs.

Another project that applies database techniques to software and software
environments is Cactis, which encompasses the "design, coding, and debugging
of computer programs, as well as the creation, maintenance, and reuse of mod
ules and versions."5 The data model used in Cactis includes powerful type
constructors necessary when modeling such objects as programs and program
versions. There are many forms of derived data in a software environment, and
the Cactis database management system is unique in its ability to represent and
maintain derived data in a time- and space-efficient fashion.

A software environment must support detailed data about each module and
statements for optimizing code within a compiler. A database can simplify this
task by allowing a program to be viewed as a number of data objects. The Cactis
system is also able to control program recompilation based on last modification
times and mutual dependencies. This is similar to the make capability in UNIX
and other environments. The proper application of the recompilation utility en
sures that inconsistencies between parts (or modules) of a software system do not
occur.
The general goal of Cactis is to centralize all database functionality of a

software environment, thus minimizing the effort needed to construct environ-

www.manaraa.com

264 Chapter 10

ments and allowing the efficient design, use, reuse and maintenance of software.
A Cactis database is viewed as a collection of objects. Attached to each data
object is a group of data values called attributes. The type of the object deter
mines the set of attributes attached to it. Types of objects can be modified
dynamically without affecting related objects. The Cactis data model also allows
some local behavior: Individual objects can respond to changes elsewhere in the
database. This behavior characterizes the Cactis data model as an object-oriented
model.

Version control is accomplished in the Cactis data-modeling system by
grouping sets of modules together and allowing only groups of modules to be
checked out, modified, and checked in as a new version. In this system subse
quent versions of a program are not explicitly stored but rather derived from a
current version by applying some delta mechanism. Hence only this delta mecha
nism has to be stored and applied to the program when necessary. In this way it is
very easy to retrieve older versions of the program.

The Source Code Control system (SCCS) is a software tool developed to
help programmers control changes to source code.6 This particular system takes a
formal approach to the mechanisms of version control as discussed earlier. This
system was an early attempt at maintaining the integrity of a software system
when changes were made to different modules in the system. The main features
of SCCS are storage, protection, identification, and documentation. All versions
of a module are stored together in the same file. A programmer may not have
access to certain modules or certain versions of modules. Access to modules is
allowed only through SCCS. The system automatically stamps modules with the
version number and time. Documentation of who made the change as well as
what the change was and where it was made is automatically performed. As in
the Cactis model, each change made to a file is stored as a discrete delta. To
produce the current version of the program, deltas are applied in a chronological
sequence. Deltas may be optional, which means they can be applied only when
the user passes a designated flag. Deltas may also include or exclude the applica
tion of other deltas. The ideas presented in this system have been used in more
complex systems, such as Cactis.

The C Information Abstraction system (CIA) analyzes the structure of c
programs, extracts relational information from the programs, then stores this
information in a database. After a program's structural information is executed
and stored in a database, programmers can invoke relational queries to analyze
different aspects of the software. The database stores only pointers to the source
text. A database query operation and a source file access operation are sufficient
to retrieve the full text of any software object. The CIA can be used to study the
following aspects of program structures:

• Subsystems: Identify self-contained components in a large system. This

www.manaraa.com

Software Maintenance 265

reachable set (closure) can be computed by tracing all reference relation
ships.

• Layering: Topologically sorts different combinations of reference rela
tionships. Two layering strategies are type-layering structure and file
layering structure.

• Dead Code: Detects unused code in a software system.

• Coupling: Analyzes the binding strength between pairs of software ob
jects. Two functions are considered to be strongly coupled if they share
many references to the same objects. In general binding strength values
can be used to cluster functions to reduce cross coupling between mod
ules. This approach has the advantage of localizing the impact of each
change in the software system.

In CIA a c program is viewed as a collection of global objects that can be
referred to across function boundaries. Each object has a set of attributes. Two
objects may have a reference relationship between them; for example if A refers
to B, A cannot be compiled and executed without the definition ofB. In database
terms this relationship is called referential integrity. Applying techniques devel
oped in the CIA system to achieve the preceding goals facilitates automating the
use and maintenance of software systems. When this is accomplished, the net
cost of maintaining a software system may be drastically reduced.

References 7-11 present other work on applying database techniques to
software maintenance. See Refs. 12-15 for a general discussion of software
maintenance and maintenance tools.

10.3. PROGRAMMING OBJECT BASES

The term programming object base is used in Ref. 16 to signify the use of an
object base, such as COMPOSE (see Section 7.4), for programming. The term
object base is used instead of object-oriented database because the structures of
programming objects as well as the behavior of programming objects (i.e., meth
ods, programs, and processes) are understood and managed by the object base
management system. In addition unlike systems described in Section 10.2, pro
gramming objects at different levels of abstraction (down to the level of variables
and statements) are targeted in such an environment. This section describes the
major features of a programming object base.

Files in COMPOSE are recognized as file objects. The concept of directory
is realized by classifying files into ordinary files and directory files, where a
directory file object is a set of files among which some can be directories.
Therefore the file system is recognized as a directory object, where each file is

www.manaraa.com

266 Chapter 10

identified by its (absolute) path in the file system. Each file object is characterized
by a set of attributes and operations that can be applied to files. Since an object
can be a set whose elements cannot be predetermined, sets and object attributes
are treated differently in the environment. The notation object.attribute is used
exclusively to identify an attribute of an object, and the notation object/attribute
is used exclusively to identify an element of a set object. For example assume
file _system is the file system installed for the environment. The size of a file lisa
in the directory john of the directory mary of file _system can be identified as:

file_system/mary/john/lisa.size

However the total amount of memory used by file _system can be identified as:

file_system. total_memory

Programming objects at different levels of abstraction are organized hier
archically. For example a c+ + project consists of a set of modules. A module
consists of a set of classes and globals. A class consists of a set of variables and
functions. A function consists of a set of variables and statements. A statement
can be an assignment statement, an if statement, etc. The following summarizes
the set of programming classes.

CPP_Proj ect
{
set_of_Module_Type Module;

/ / each source file in proj ect
Proj _DateTime_Type Proj _DateTime;

/ / time of last update
}

Module_Type
{
Module_DateTime_Type Module_DateTime;

/ / time of last update
Module _Name _ Type Module _Name;

/ / name of source file
set_of _Global_Include_Type Global_Inc;

/ /Global includes
set _of _Global_Def ine _ Type Global_Def;

/ / Global defines
set_of_Class_Type Class;
set_of_Class_Type Model;

www.manaraa.com

Software Maintenance

set _of _Function_Type Global_Func;
/ / Global functions

set _of _ Variable_Type Global_Var;
/ / Global variables

}

Global_Include_Type
{
set_of_Module_Type Include_File;

/ / list of include files
}

Global_Def ine _ Type
{
Define_Macro_Type Define_Macro;
Define_Expr _Type Define_Expr;
}

Class_Type
{
set _of _Class _ Type Parent _Class;

/ / name of parent class
set _of _Function_Type Local_Func;

/ / Local funct ions
set _of _ Variable_Type Local_Var;

/ / Local variables
}

Function_Type
{
Name_Of_Variable Type_Of_Func;
set _of _Variable _ Type Argument _List;

/ / List of arg's
set_of_Variable_Type Variable;

/ / List of local variables
set _of _Statement _ Type Statement;
}

Variable_Type
{
Type_Of _ Variable Var _ Type;

/ / int, float, double, etc.
Name _Of _ Variable Var _Name;

/ / actual variable name
Init_Type Var _Init; / / initialization value

267

www.manaraa.com

268 Chapter 10

}

Assignment_Type: Statement_Type
{
Name _Of _ Variable Var _Name;
Expression_Type Assigned_Expression;
}

switch_Type: Statement_Type
{
Name_Of_Variable Switch_Var; / / name of var
set _of _Swi tch_Block_Type Swi tch_Block;
}

Swi tch_Block_Type
{
Swi tch_Block_Constant Swi tch_Constant;
Block_Type Swi tch_Block_Statements;
}

If_Type: Statement_Type
{
Condition_Type If _Condition;
Block_Type If_Block;
}

While_Type: Statement_Type
{
Condition_Type While_Condition;
Block_Type While_Block;
}

DoWhile_Type: Statement_Type
{
Condition_Type DoWhile_Condition;
Block_Type DoWhile_Block;
}

For_Type: Statement_Type
{
Statement_Type Init_Statement
Condition_Type Term_Cond; / / Term. condition
Statement _ Type Increment _Statement;

/ / Incr. Statement

www.manaraa.com

Software Maintenance

Block_Type For _Block;
}

Block_Type: Statement_Type
{
set _of _Statement _Type Block_Statement;

/ / set of statements
}

Condi t ion _ Type
{
Expression_Type Expr;
}

Expression_Type
{
Constant_Type Constant; / / any constant
Name_Of_Variable Variable; / / any variable
Expression_Type Left _Expression;
Operator _ Type Operator;
Expression_Type Right _Expression;
}

269

Turning to object classes, the following sections show some examples of
COMPOSE facilities that can be applied for software maintenance (See Section
7.4 for details about COMPOSE):

10.3.1. Queries

The following query retrieves the names of all global include files, module
names, and function types for all modules whose date/time stamp is after 10:30
AM on February 28, 1993:

range of MODl is Module_Type
range of FUNC is Function_Type
range of GLOBINC is Global_Include_Type
retrieve (GLOBINC.Include_File,
MOD1.Module_Name,
FUNC.Type_Of_Func)
where MOD1.Global_Func .contains (FUNC) and

www.manaraa.com

270

MOD1.Global_Inc.contains(GLOBINC) and
MOD1.Module_DateTime> "199302281030AM"

10.3.2. Integrity Constraints

Chapter 10

The following integrity constraint asserts that a variable called TeLString
is always of the type string (for any module):

range of VAR is Variable_Type
VAR.Var_Name = "Tel_String" => VAR.Var_Type =
"string"

As another example, the following constraint asserts that all modules with a
global macro definition ofTREWI, must have its value set to 123L. This ensures
that the same global defined in different source files has the same value. This
constraint is checked whenever the value of any global define of this variable is
modified or a new global define for this variable is added.

range of MODl is Module_Type
range of GLDEF is Global_Define_Type
MOD1. Global_Def. contains (GLDEF) and
GLDEF. Define_Macro == "TREW1" =>
GLDEF.Define_Expr == "123L"

10.3.3. Triggers

The following trigger implements make:

range of PROJ is CPP_Project
range of MOD is Module_Type
Proj.Module.contains(MOD) and (PROJ.Proj_DateTime
< MOD.Module_DateTime)
=> MOD.compile(), Proj .link(), (PROJ.Project_
DateTime = get_time ())

10.3.4. Views

The following version transformation query transforms a module called
TRTEXT.CPP such that if there is a global function of the type int and a global
variable of the type string, then the attribute Class replaces the attribute Model in
the definition of the module. This is an example of how a more complex query
performs a realistic transformation of a module into another version. Similarly a

www.manaraa.com

Software Maintenance 271

countertransfonnation can be applied to transfonn a later version of a program
ming object into an earlier version. In this simple case, all that has to be modified
in the countertransfonnation is the order of the variables in the replace() opera
tion.

Module_Type Module: =
range of MODl is Module_Type
range of GLVAR is Variable_Type
range of FUNC is Function_Type
replace:Module_Type(MOD1.Class,MOD1.Model)
where (MOD1. Module _Name == "TRTEXT. CPP" and
MOD1.Global_Func.contains(FUNC) and
MOD1.Global_Var.contains(GLVAR) and

(GLVAR.Var_Type == "string") and
(FUNC . Type _Of _Func == "int")

10.4. PROGRAM MANAGEMENT

A c+ + program or function in COMPOSE is converted into and stored as a
production system. This is accomplished by first transfonning the module into a
flowchart, labeling each node with a special state variable n, then converting the
labeled flowchart into production rules.J7 As discussed in Section 10.3, COM
POSE manages programming objects based on integrity constraints and triggers.
It further combines testing and maintenance on executable programming objects,
such as programs and functions, so that the validity of a test case is detennined
not only by its expected functionality (as in most systems) but also by the
constraints asserted on valid states, which are assigned incrementally from
changes made at the statement level.

10.4.1. Incremental Testing

Given a test case a, assuming the testing strategy is path coverage (see
Section 9.3), consider a flowchart P. The execution profile of a can be recorded
and stored as a sequence of nodes (in the flowchart). Test case profiles can be
used to support incremental testing, which means some test cases remain valid
after changes are made to a program or function.

lOA. I. I. Adding and Deleting an Operation Node

Adding a node a between two existing nodes b and c of P invalidates those
test cases whose profiles include b and c. The same set of test cases is invalidated
when deleting a node a between two nodes b and c of P.

www.manaraa.com

272 Chapter 10

10.4.1.2. Adding and Deleting an Arc

Adding an arc between two existing nodes b and c ofP invalidates those test
cases whose profiles include b. The same set of test cases is invalidated when
deleting an arc a between two nodes b and c of P.

A finer approach may avoid excluding some test cases even though they
contain band/or c as just described: Consider a program P expressed as a
production system as described earlier. Assume P consists of a set of variables
Vp , a set of input objects [p, and a set of output objects Op. Let Vo represent
values for the variables ofP initially. Let t be a test case and the execution profile
for t is the sequence EPp, = «VI' r l , VI')" .. ,(vn, rn' vn,), where each r j , I :s i
:s n, is a production executed on behalf of t; vj are values of the variables of P
before r j is executed; and Vj' are values of the variables of P after r j is executed.

Based on these assumptions, we say there is data dependency between an
output object x and a production rjl I :s j :s n (or x depends on r) if the action
part of rj modifies the value of x. We say there is control dependency between
two productions rj and rk' where k < j (or rj depends on rk) if the condition part of
rj references a variable x and x is modified in rk' The accumulated set ofmodifiers
of a production rj is defined to be the set of productions {rk}' where k < j and rj

depends on rk' Based on the preceding, productions are added and deleted as
described in the sections that follow.

l0.4.1.2.a. Deleting a Production. Consider a production r to be deleted. If
r does not belong to EPP,' t remains a test case. If r belongs to EPP,' assume that
the index for r in EPp , is i. If no output variable depends on rand r j does not
belong to the accumulated set ofmodifiers for any particular production rk' where
I :s i < k, and the condition part of r j + 1 remains to be true after r j _ 1 is executed,
assuming the value assigned to a in r j is assigned to a in r j _ I , then t remains a
test case. Otherwise t is invalidated.

l0.4.1.2.b. Adding a Production. Consider a production r to be added. As
sume that the node corresponding to r is to be added between two nodes a and b
in the flowchart and the productions corresponding to a and b are ra and rb'
respectively. If EPP, does not include ra' then t remains a test case, since no path
can reach the node corresponding to r without going through a. If EPP, does
include ra and if the condition part of r is not true after ra is executed, t remains a
test case, since a must correspond to a test statement (e.g., if, switch). Now let us
consider the case when EPP, includes ra and r is enabled. If no output variable
exists that depends on r and r does not belong to the accumulated set of modifiers
for any particular production rk, where I :s i < k, and rb can be enabled by rafter
the value assigned to a in ra is assigned to a in r, then t remains a test case.
Otherwise t is invalidated.

www.manaraa.com

Software Maintenance

10.4.2. Integrity Control

273

Given a program or a function P, let the set statep store the set of tuples (t,
v), where v is a possible instantiation of Vp (i.e., the set of variables of P
described earlier) obtained according to a valid test case t. Let the set transp store
the set of tuples (t, v, r, v'), where t is a valid test case and (v, r, Vi) is a member of
EPp' Assume the four components of each element of transp are accessed as test
_ca~e, current_state,production, and next_state, respectively; and assume the
two components of each element of statep are accessed as test _case and state,
respectively. Some fundamental properties of P can be defined in terms of
integrity constraints and verified by the set of reachable states according to the
test cases performed. For example the property proper termination can be de
fined as at least one member of FSp, which designates the set of final states,
should be in transp (current _state = so). An application-dependent constraint
can be asserted in terms of a logical liveness property and/or a logical
reachability property, which are defined in the following:

• Logical Liveness: Given a logical expression E over the current state, next
state, and/or production, the set rrE!.transp) is not empty. This guarantees
that states satisfying E are active states, where rr designates the relational
select operator.

• Logical Reachability: Given a logical expression E over the states, the set
rrE!.statep) is not empty. This guarantees that states satisfying E are reach
able from the initial state.

For instance the constraint that an application cannot terminate with a file, say, a,
open can be stated as an integrity constraint:

statep(S)!\transp(R)!\(R.current_state S) ~

-S.state/a.isopen() .

Clearly integrity constraints asserted over valid states can be verified incre
mentally. Given P, transp and statep, consider a change made to P at statement
level. The following can be computed

• 8+ trans: Designates which objects should be added to transp due to the
change.

• 8- trans: Designates which objects should be removed from transp due to
the change.

• 8+ state: Designates which objects should be added to statep due to the
change.

www.manaraa.com

274 Chapter IO

• 8- state: Designates which objects should be removed from statep due to
the change.

An integrity constraint is presented as:

where the predicate symbol of Pi' I ::5 i ::5 k, is either transp, -transp, statep, or
-statep can be converted into:

according to the following rules:

• If the predicate symbol of Pi' I ::5 i ::5 k, is transp, then Ti has 8+ trans as
the predicate symbol with the same set of arguments.

• If the predicate symbol ofPi' I ::5 i ::5 k, is -transp, then Ti has 8- trans as
the predicate symbol with the same set of arguments.

• If the predicate symbol ofPi' I ::5 i ::5 k, is statep, then Ti has 8+ state as the
predicate symbol with the same set of arguments.

• Ifthe predicate symbol of Pi' I ::5 i::5 k, is -statep, then Ti has 8- state as
the predicate symbol with the same set of arguments.

10.5. REVERSE ENGINEERING AND DESIGN RECOVERY

Numerous advances in the field ofsoftwareengineering led to the development
of increasingly large scale software systems. Maintenance costs associated with
these systems havecorrespondingly risen aswell. Theseexorbitant costs spurred the
innovation ofmany procedures to simplify the maintenance process. These innova
tions include reverse engineering and design recovery. Reverse engineering ap
proaches the understanding ofa software system from various design perspectives,
which means that the system can be more easily altered and maintained.

Before discussing the concepts of reverse engineering and design recovery,
some key concepts of software development are defined.

• Subject System: Actual code or set of programs to be analyzed. The
subject system is not confined to programming code; it can also refer to
data files, signal interfaces, etc.

• Life Cycle of Software: Set of phases that software usually proceeds
through during development. These phases can be separated into three
distinct stages: requirements, design, and implementation.

www.manaraa.com

Software Maintenance 275

• Levels of Abstraction: Classify the transition from general concepts to
implementation details. Higher abstraction levels are associated with early
stages in the life cycle, while lower abstraction levels are identified with
later stages.

According to Ref. 18, "Reverse engineering is the process of analyzing a
subject system to: (1) identify the system's components and their interrelation
ships, and (2) create representations of the system in another fonn or at a higher
level of abstraction." Design recovery is generally regarded as a subset of reverse
engineering. In design recovery design concepts are recovered from the subject
system and presented using various representations, such as data flow, control
flow, and module structure. According to Ref. 19, "Design recovery must repro
duce all of the infonnation required for a person to fully understand what a
program does, how it does it, why it does it, and so forth."

The first step in reverse engineering is to analyze the subject system for
objects to store in a domain model. The domain model is "a knowledge base of
expectations expressed as patterns of program structures, problem domain struc
tures, language structures, naming conventions, and so forth, which provide
frameworks for the interpretation of the code."19 In other words the domain
model stores various data structures, module structures, variable specifications,
and infonnal infonnation in object-oriented classes. Instances of these classes are
then identified in the subject system code. In general infonnal infonnation is not
related to the structure of a system; rather it refers to semantic infonnation
encoded by the software engineer. Infonnal infonnation greatly aids in under
standing the subject system; therefore it is part of the domain model.

Once various structures, variables, and infonnal infonnation have been
stored in object-oriented classes, interrelationships and connections must be
identified. Each instance of these classes has two important properties: structural
patterns and associative connections. Structural patterns are used to produce
relationships between objects that operate on the same data structure or within
some module structure. Associative connections are fonned using natural lan
guage associations and infonnal infonnation. These connections take advantage
of fuzzy relationships ignored by structural patterns. Reverse engineering pro
duces relationships among different structures within a software system. These
relationships can then be examined to produce a variety of displays, including
program flow, program structure, program description, module breakdown, and
fonnal specifications.

According to Ref. 19, the design recovery process can be separated into
three steps:

1. Support program understanding for maintenance: The analyst searches
the system for recognizable organizational structures and design con
cepts. This part of design recovery requires reverse engineering. The

www.manaraa.com

276 Chapter 10

reverse engineering process extracts conceptual abstractions and presents
them using informal diagrams, flow of control, and design rationale.
Conceptual abstractions are the "semantically rich natural-language ab
stractions ... that represent the essential concept underlying the mod
ule." Once this step in design recovery is accomplished, increased under
standing from the additional design information simplifies software
system maintenance.

2. Support population of reuse and recovery libraries: Once design con
cepts are recovered from the subject system, they can be factored into
smaller, more independent design aspects. These design aspects are then
added to a component library for reuse. The more independent a design
aspect is, the more likely it can be reused in similar components from
other systems. Thus future software systems can easily be developed
from existing system designs.

3. Apply results ofdesign recovery: New systems are produced from reuse
library designs best fitted to the particular applications.

With these three steps, design concepts are detected in existing software, gath
ered into libraries, then implemented in suitable new software systems.

Most reverse engineering systems and tools have similar architectures. Fig
ure IOJ shows various components in reverse engineering systems. Reverse
engineering systems analyze a software system by passing it through a par
ser/analyzer to extract structures and designs. These structures are then stored in
an information base. This information base consists of a complex interrelation
ship scheme of numerous data structures, module structures, and other objects.
The objects are then examined by a variety of composers to produce diverse
views of the software system. Depending on how the composers traverse the
relationships in the information base, views can be composed of program flow,
program control, design rationale, informal relations, etc. The following sections
discuss some existing tools.

Software
work

product
Information

base
Newview(s)
of product

Figure 10.1. Model of reverse engineering systems. Reprinted with permission from Ref. 18, ©
1990, IEEE.

www.manaraa.com

Software Maintenance

10.5.1. Desire Version 1.0

277

The system19 is comprised of three parts: a parser, a set of post-processing
functions, and a PlaneText hypertext system. The parser takes C code from a
software system as input, then parses it into trees. Informal information, such as
variable names, comments, and other semantic clues are preserved separately.
Postprocessors are then invoked to store the information recovered from the
parse trees. Postprocessors construct a dictionary to preserve information about
functions, data items, informal information, and relationships between them.
Function information includes the location of these functions within system files.
Information on data items consists of their definitions, where they are defined,
and where they are used. Informal information is associated with corresponding
functions or data items it describes. Relationships stored between these functions
and data items consist of calls, uses, and dependencies.

Once all information is stored in the dictionary, the PlaneText processor
takes control to compute a hypertext web of nodes and links. Separate views are
displayed using a browser to exhibit some views and suppress others. For exam
ple if the programmer wishes to view function calls, PlaneText displays the
functions involved and the lattice of calling relationships; however other infor
mation, such as data items and files is not displayed.

Different views supported by Desire Version 1.0 are defined by a set of
prolog queries. These queries answer questions at different structural levels,
including what functions call function x or what functions defined in File A call a
function defined in File B. Queries can also answer questions relating to function
types, such as what functions appear to be utility functions. The visual interface
of Desire Version 1.0 is relatively simple and straightforward. When the user
enters a query in the prolog interaction window, the system highlights all func
tions, data items, or files in the PlaneText web that satisfy the query.

Desire Version 1.0 takes advantage of informal semantic information within
a software system. It implements the domain model using a set of CLOS classes,
which are specially suited for storing semantic information and using informal
patterns as entities in the dictionary. By using informal information, Desire
Version 1.0 provides a more detailed and complete description of the software
system.

10.5.2. MicroScope

MicroScope20 is designed to analyze programs written in COMMON LISP and
COMMON OBJECTS. It is essentially a reverse-engineering system because it offers
utilities to analyze program code and retrieve design information. The knowledge
base of MicroScope spans data flow, control flow, cross-reference, and display

www.manaraa.com

278 Chapter 10

strategies. Since MicroScope runs in a programming environment, it also offers
debugging strategies and execution history in addition to normal reverse-engi
neering strategies.

Tools offered by MicroScope allows programmers to evaluate a program
structure at different detail levels. A programmer can also preview the effects
certain changes produce on other modules. In addition MicroScope allows the
programmer to monitor program execution to' locate run-time errors. Various
MicroScope features that make it an attractive system:

• MicroScope supports views of a program's structure at different abstrac
tion levels. This allows the programmer to focus on modules of interest
within a graphical representation of the program's structure.

• When altering a function or variable, a programmer must evaluate effects
of the proposed change on other structures within the program. This
evaluation is referred to as impact analysis. MicroScope browsers display
areas in a program affected by a change in the present source code.

• MicroScope also associates annotations to each structure analyzed. These
annotations contain information on source code, documentation, variable
declarations, function calls, design specifications, etc. These annotations
are indeed objects within the domain model. Annotations are analogous to
nodes within a hypertext system. MicroScope displays different views of a
program with any desired annotations. This can include such items as the
number of times a function is called, the calling function, the variables
altered in a specific function, etc.

• Program slices allow the programmer to use flow analysis to observe
specific statements within a program that lead to certain variable values.
Program slices help determine for example which statements were in
volved in resetting the value of I to null.

In summary reverse engineering can be applied to any software system for
maintenance as well as development purposes. This is accomplished by simplify
ing the understanding of the software system. Although this is the main goal of
reverse engineering, Ref. 19 points out alternative objectives:

• Simplifying and managing the excessive size and complexity of certain
software systems. Reverse engineering provides various tools for examin
ing the subject system and analyzing design methods.

• Producing various views and perspectives. Graphical representation is a
key method of displaying results in reverse engineering.

• Recover lost information through design recovery.

www.manaraa.com

Software Maintenance 279

• Assisting the search for existing software that is aptly suited for re
usability.

PROBLEMS

1. Assert the following as integrity constraints in a program object base:
(a) A program should start and terminate in the same directory.
(b) All files should be closed before termination.

2. Assert the following as triggers in a program object base:
(a) When a version of a programming object is changed, all other versions

are automatically changed.
(b) Close any open files before termination.

3. Modify the incremental-testing approach described in Section 10.3.4
assuming branch coverage is the testing strategy.

4. Modify the incremental-testing approach described in Section 10.3.4
assuming statement coverage is the testing strategy.

5. Is the incremental-testing approach described in Section 10.3.4 sufficient
and necessary? If yes, why? If not, why not?

6. Is the incremental change management approach described in Section
10.3.3 sufficient and necessary? If yes, why? If not, why not?

7. Is it possible to run a programming object base as a shell in UNIX? If yes,
what problems may arise? If not, why not?

8. Define a view in a program object base that removes all #include
(malloc.h) from each module of a project (i.e., given a project, the corresponding
view removes all such declarations).

REFERENCES

I. Schneidewind, N. F. IEEE Transactions on Software Engineering SE-13:3, 303-310 (Mar.
1987).

2. Narayanaswarny, K., and Scacchi, W. IEEE Transactions on Software Engineering SE-13:3,
324-334. (Mar. 1987).

3. Rarnarnoorthy, C. V., Usuda, Y., Prakash, A., and Tsai, W. T. IEEE Transactions on Software
Engineering SE-16:11, 1225-1234 (Nov. 1990).

www.manaraa.com

280 Chapter 10

4. Chen, Y.-F., Nishimoto, M. Y., and Ramamoorthy, C. V. IEEE Transactions on Software
Engineering SE-16:3, 325-334 (Mar. 1990).

5. Hudson, S., and King, R.IEEE Transactions on Software Engineering SE-14:6, 709-719 (June
1988).

6. Rockhind, M. IEEE Transactions on Software Engineering SE-l:4, 364-370 (Dec. 1975).
7. Adams, E., Honda, M., and Miller, T. "Object management in a CASE environment." Proc. of

the 11th International Conference on Software Engineering (Pittsburg, May 1989), pp. 154-63.
8. Estublier, B. "Experience with a data base of programs." Second Software Engineering Sympo

sium on Practical Software Development Environments (Palo Alto, CA, Dec. 1986), pp. 84-91.
9. Penedo, M. "Prototyping a project master database for software engineering environments."

Second Software Engineering Symposium on Practical Software Development Environments
(Palo Alto, CA, Dec. 1986), pp. 1-11.

10. Dillistone, B. In Software Engineering Environments (Brereton, P., ed.) (Ellis Horwood, En-
gland, 1988).

11. Proc. ofthe Second Workshop on Configuration Management (ACM, Princeton, NJ, Oct. 1989).
12. Oman, P. IEEE Software 7:3, 59-65 (May 1990).
13. Rombach, H. D. IEEE Transactions on Software Engineering SE-13:3, 344-354 (Mar. 1987).
14. Osborne, W. M., and Chikofsky, E. J. IEEE Software 7:2, 10-11 (Jan. 1990).
15. Su, S. Y. W., and Shyy, Y. In Advanced Database Systems (N. Adam and B. Bhargava, eds.)
(Springer-Verlag, New York, 1993) pp. 105-26.

16. Sheu, P. C.-Y., and Peterson, L. 1. In Advanced Database Systems (N. Adam and B. Bhargava,
eds.) (Springer-Verlag, New York, 1993), pp. 65-86.

17. Sheu, P. C.-Y. "Concurrent production systems." Proc. of1985 Hawaii International Conference
on System Science (Jan. 1985).

18. Chikofsky, E. J., and Cross, J. H.IEEE Software. 7:1, 13-17 (Jan. 1990).
19. Biggerstaff, T. J. IEEE Computer 22:7,36-49 (July 1989).
20. Ambras, J., and O'Day, V. IEEE Software 5:3, 50-58 (May 1988).

www.manaraa.com

11

Advanced Programming Environments

In Chapter 5 some basic facilities provided by a conventional programming
environment were discussed. Chapter II discusses some advanced concepts re
lated to the programming environment that were explored in the past. These
include knowledge-based programming environments (Section 11.1), visual pro
gramming environments (Section 11.2), distributed programming environments
(Section 11.3), programming environments that support concurrent engineering
(Section 11.4), and component software (Section 11.5).

11.1. KNOWLEDGE-BASED PROGRAMMING
ENVIRONMENTS

Artificial intelligence integrated within software engineering is a major and
active research commitment to enhance software productivity. This development
is important because it both aids the software engineer and increases program
reliability. By developing a knowledge-based software engineering environment
(KBSEE), an expert system can increase productivity and assist all areas of the
software development process. For a KBSEE to be effective, it must also be
comprehensible and supply tools to assist all areas of software development. A
KBSEE differs from conventional software engineering environments in that is
created to change specifications to produce efficient implementations. Recent
systems use such models as rules, logic, and object-oriented programming as
opposed to procedural. The key to these systems lies in the fact that the amount
of aid an environment provides is proportional to the level of intelligence and
comprehensibility it carries. This intelligence is related to how the knowledge
base is implemented and how system components interact with each other. This
section briefly summarizes features of two KBSEE environments.

11.1.1. KBEmacs

The MIT began research into knowledge-based techniques to support soft
ware engineering in the mid-1970s. The result was a project called the Program-

281

www.manaraa.com

282 Chapter II

mer's Apprentice (PA).\ The focus was to develop ways of automating tasks used
by software engineers. In the process a knowledge-based demonstration system,
called the Knowledge-Based Editor in Emacs (KBEmacs), was developed.2

Though not ideal it displayed most of the capabilities of the PA. The KBEmacs
acts as an editor programming assistant by making programming smoother for an
expert programmer. It makes it possible to create programs out of algorithmic
fragments, to define new fragments and to intermix a knowledge-based editor
with syntax-based programming. It also aids in program documentation.

One of the ideas of the PA is to have a division of labor and shared
knowledge; in KBEmacs shared knowledge takes the form of clichis-a vocabu
lary of relevant intermediate and high-level algorithmic concepts. The basic ideas
of cIichis are assumed to be shared with the programmer and the KBEmacs
library. The KBEmacs uses these cIichis to form programs and program seg
ments to aid the programmer. The following is an example of a cIichi that
compares two numbers, then returns a Boolean value that states whether or not
the numbers differ by less than a given epsilon.2

clichi EEQUALITY _WITHIN_EPSILON is
primary roles X, Y;
described roles X, Y, EPSILON;
comment "determines whether { the x } and { the y }
differ by less than { the epsilon}";
constraints
DEFAULT ({ the epsilon}, 0.00001);
end constraints;
begin
return abs ({ the input x} - { the input y}) < { the
epsilon};
end EQUALITY_WITHIN_EPSILON;

The programmer accesses this cIichi when communicating with KBEmacs
by a phrase similar to an equality_within_epsilon of A and B.

Referring to the concept of the assistant and the expert, it is common for
an expert to give orders to an assistant requesting completion of certain tasks.
An example may be to: "Define a simple report program UNIT _REPAIR
_REPORT. Enumerate the chain of repairs associated with a unit record, printing
each one. Query the user for the key (UNIT _KEY) of the unit record to start
from. Print the title 'Report of Repairs on Unit' & UNIT _KEY. Do not print a
summary."2 This request assumes that the expert and assistant share a good deal
of knowledge. For example the request assumes the assistant knows what simple
report, enumerate the chain, and query the user for the key all mean. In this way
KBEmacs cIichis serve as a medium of assumed knowledge between the user and
the knowledge base.

www.manaraa.com

Advanced Programming Environments 283

Similar to the preceding request, knowledge-based commands of KBEmacs
allow the user to prompt a request that usually takes the form (verb) followed by
(noun phrases). For instance if the user wants to construct a program UNIT
_REPAIR_REPORT, the programmer uses a knowledge-based command de
fine in a statement such as, Define a simple _report program UNIT _REPAIR
_REPORT. The KBEmacs interprets this statement as Define a program UNIT
_REPAIR_REPORT by using the clichi simple _report. The KBEmacs com
municates results by placing an instance of simple_report in the editor buffer
and directly modifying it. In this way the programmer is able to adjust and edit
the program normally after the change is completed. The KBEmacs also keeps
track of information about the program, such as clichis and clichi constraints to
update variable limits later and maintain consistency that the expert may over
look. The KBEmacs has other features, such as automatic documentation; how
ever, since it is still primitive in development, it displays only a small portion of
the Programmer's Assistant capabilities.

11.1.2. CHI

The CHI, developed at Kestrel Institute,3 resulted in a compiler that was
self-reliant or bootstrapped due to its ability to refine itself from very high level
specifications. The compiler of CHI allows programs to be written in a very high
level language and in terms of sets and maps; afterward a program can be
compiled into bit vector, list, or hash table representations. These transformations
are done in a wide-spectrum language called V. The transformation of one level
of code into another is embedded in transformation rules. These rules are kept
within a knowledge base of descriptions called DKB, and they carry the single
design decision to translate one level of code into another.

From the DKB compilers in the system create default implementations.
From a list developed by the system, the user selects a set of transformation rules
to develop an efficient implementation. The DKB stores enough information
about the process to allow the user to backtrack to select alternative implementa
tion routes. Throughout this process the DKB continues to interact with the user
and evolve. In this way as abstract solution to a problem is found, the system
creates various branches or paths from the original specification in an attempt to
refine it. One of the purposes of the DKB is to maintain a collection of distinct
mappings, called properties, defined on objects. The objects represent the rela
tionship between other objects and the objects' internal attributes. An example
object describing the V expression 3 * S has the following format:
(object 495)
instance-of: (generic-object member-op)
element-expr: (object 902) (literal-integer)
set-expr: (object 113) (variable)

www.manaraa.com

284 Chapler JJ

Object 495 has three properties: instance-of, element-expr, and set-expr. It is
an instance of some generic object member-op that evaluates an object of the
class literal-integer to object 902 (which describes 3), then evaluates an object of
the class variable to the object 113(S). The DKB has a kernel of special objects
called generic objects that map uniquely to each construct of the V language.
Each CHI object must be an instance of one and only one generic object. A
generic object describes certain properties inherent in that instance. Two main
properties are generic properties and print forms. Generic properties (P) de
scribes the standard properties applicable to instances of object P. Likewise print
forms (P) describes the syntax of an instance of object P. The DKB also develops
a way of storing all contexts or states of the knowledge base in a tree. In this way
backtracking is simplified when exploring alternative implementations.

The CHI uses V because it is able to represent descriptions at all levels of
program synthesis from very high to low; this is a valuable feature, since CHI is
used by itself. The V has four components: The procedural component is used to
develop target programs or initial code. This component looks similar to PASCAL
and may also include first-order logic constructs. Another component describes
objects of the DKB in V expressions; values of object properties can be accessed
at this level. The other two are components that support compilers in translating
V expressions.

11.2. VISUAL PROGRAMMING ENVIRONMENTS

Visual programming refers to using visual techniques-diagrams, freehand
sketches, icons, or graphical manipulations-to ease various programming activ
ities, such as design, editing, coding, documenting, and debugging. When the
syntax of a programming language includes such expressions, it is called a visual
programming language (VPL). On the other hand, a visual programming envi
ronment (VPE) provides visual facilities to work with a (visual or textual) pro
gramming language.

Visual programming languages are available in different forms. Some visual
languages provide a set of graphical user interface (Gill) building blocks so that
the user creates the Gill by using and connecting these building blocks. Typ
ically the behaviors (semantics) of such building blocks are implemented in a
textual programming language; examples include HyperCard (semantic lan
guage: HyperTalk) and Visual Basic (semantic language: Basic). A more uni
form approach to visual programming requires program semantics to be visually
specified. One typical paradigm uses data flow diagrams: Programs are con
structed in terms of a set of data flow diagrams, then automatically transformed
into textual forms. Some visual languages are constraint-based; Le., a program is
constructed by establishing a set of constraints presented in some graphical form.

www.manaraa.com

Advanced Programming Environments 285

Many visual languages resemble logic programming; i.e., a program is built by
establishing a set of rules, but the building is done visually. For example in
ThinkPad,4 objects and data structures can be presented/created graphically and
a rule (constraint) can be established by connecting various objects, which may
be constants, variables, or predicates. ThinkPad is also an instance of program
ming by demonstration, which allows a program to be built automatically from
the demonstrations given by the programmer (for example a binary tree insertion
program can be built by showing how a node is inserted graphically). Yet another
type of visual languages is form-based, where a program is built by constructing
and completing various forms (possibly using variables and subforms). This type
of visual language can be regarded as extensions of spreadsheet programming; it
has proved useful in larger domains than spreedsheet programming (e.g., con
structing and manipulating matrices). Examples of such languages include Show
and-Tell,s Forms,6 and Form/Formula.7

Similar to VPL, VPEs have been presented in various forms. 8 The simplest
ones provide a visual interface that includes windows and views (view refers to a
particular aspect of a program that can be shown graphically, such as data flow
diagrams, entity relationship diagrams, and flow charts). Smalltalk is a typical
window-based programming environment. A typical programming environment
that provides the user with multiple views of a program is Pecan.9 Some VPEs
support vsual editing; this includes syntax-directed editing (e.g., the Cornell
Program Synthesizer)lO and specification-directed editing, which allows rules in
addition to syntax to be imposed on program structures. An example of specifica
tion-directed editor is Use.It. ll More recent VPEs provide object-oriented li
braries and extensive tools (e.g., drawing tools, configurations, versions) to help
the user create application specific programs; examples of such environments
include Agentsheets l2 and VPE.I3

The domain of VPEs has also been extended to provide program visualiza
tion,14 which allows the state of a program (code, data, and control state) and the
behavior of the program (or state transitions, execution history) to be visualized.
Compared with traditional VPEs, program visualization systems emphasize the
dynamics of a program and the ease of visualizing such dynamics from an
observer's point of view; therefore a program's visual presentation may be ani
mated or in other ways unrelated to the program's textual contents (or structure).
For example a program that implements the quicksort algorithm may be visualized
as a set of vertical bars (showing the data state) and a set of data swaps (shown as a
sequence of ball pairs connected by a horizontal link). A partial list of program
visualization systems includes Tango, IS Pavane,16 and Zeus.n

It has been widely accepted that the world of computing is strongly driven
toward the "point and click" visual programming paradigm. Despite of its many
successes, applications of visual programming for large scale problems requires
additional work to be done. In Reference 18, issues pertaining to the "scaling-up"

www.manaraa.com

286 Chapter 11

problem was pointed out; these include static representation, effective use of
screen real estate, documentation, procedural abstraction, interactive visual data
abstraction, type checking, efficiency, and persistence.

11.3. DISTRIBUTED OBJECT-ORIENTED
PROGRAMMING SYSTEMS

A Distributed Object-Oriented Programming system enables independent
workstations or personal computers to operate as a decentralized network environ
ment through object-oriented programming. Object-oriented programming sys
tems provide objects with the ability to execute concurrently on separate pro
cessors while allowing the user to maintain an independent workstation
environment. Therefore if a workstation malfunctions, the entire network is not
affected. Distributed object-oriented systems are very useful for creating networks
with dissimilar equipment. 19 A distributed system acts as an operating system to
manage object behavior and communication. Examples of object control are
synchronization, object interaction, resource management, and security.

It is important for a distributed system to manage object behavior correctly.
The operating system must monitor and maintain execution to maximize system
speed and data validity. Some important properties of a distributed system accord
ing to Ref. 19 are

• Atomicity: Actions within the system are either completed fully or termi
nated in such a way that all changes made by an object are undone. The
action must either commit or abort. If the action is successful, it commits.
The system then performs actions to make these changes permanent. If the
action faults, it aborts. The system then undoes modifications made by that
action to prevent invalid partial states from remaining within the system.

• Serializability: The system provides for efficient concurrent execution to
maximize performance. Scheduling effects of this concurrent execution
should be the same as for a sequential one.

• Permanence: If an object action is completed successfully, the effects
remain intact.

An important control tactic is synchronization, which prevents object opera
tions from conflicting with one another. It is important for serializability to be
sustained. A partial state of one object must be protected from the actions of
another object. There are many schemes for synchronization, but most fall under
the following two schemes2o:

• Pessimistic: Action is taken to prevent conflicts. In the event that an object

www.manaraa.com

Advanced Programming Environments 287

conflicts with another, the conflicting object is halted until the other object
is completed. The commit procedure of the other object is a signal to the
conflicting object procedure to proceed.

• Optimistic: Action is taken to test objects to see if they interfere with each
other. An object is executed and examined to verify that it does not alter
data formed from another object. If the object fails the test, it is aborted;
otherwise it is executed. This increases concurrency, since objects are not
halted. Since there must be several copies of the object to test it, this
increases overhead and decreases the system's free memory space.

The system must support request handling in some manner. If the passive
object model is used, the direct invocation method is used. In this method patron
processes are relocated from object to object whenever an invocation is made. The
patron process carries messages and parameters within it to the serving object and
back. The active object model uses the message-passing method. In this method
the parameters are bundled within the invocation itself and sent to the receiving
object. The receiving object then accepts the invocation and unbundles it to
process the request.

Security is required to prevent unauthorized clients from accessing objects.
One common security method is the capability scheme.21 A key or capability that
holds information about the object name and access rights to it is used to access
objects. When an object makes a request, the key is sent as one of the parameters to
the serving object. There can bemany keys, all with various access rights. Another
method is the control procedure.22 A control procedure to make sure the client's
access rights are valid is set up for all object requests. If the check fails, the
procedure terminates the request. The advantages of this method is its flexibility,
since the scheme can be altered to offer a variety of security algorithms.

Resource management is another essential tool. In the event of workstation
failure, adequate secondary storage resources should be available. The system
holds one copy of the object in volatile memory for execution, and another copy is
maintained on secondary storage in case of failure. Every time an object action
commits, the secondary storage is updated with new information. If an object is
needed for recovery, it is easily recopied to memory. The system also manages
processor scheduling. Schemes are used to maximize throughput and make object
communication more efficient. Processes are usually sent to lightly loaded pro
cessors to reduce waiting. Another effort is required to make sure objects that make
requests are on nearby processors; this reduces time spent waiting for invocations.

The following distributed object-oriented programming systems have suc
cessfully been used:

Amoeba23 : A research project directed by A. Tanenbaum beginning in 1985
at Urije Universiteit in Amsterdam on a distributed operating system with use
of object orientation. Amoeba generally operates with large-grain objects

www.manaraa.com

288 Chapter 11

using the fixed-type active object model. It uses both pessimistic and optimis
tic schemes and incorporates the capability scheme for security. Requests are
handled by the message-passing method. The processor scheduler uses a pool
to optimize idle processor usage.

Argus24: A distributed system that operates with both large- and medium
grain objects. The active object model is implemented with a pool of
processes to reduce process creation overhead. Synchronization is managed
through the pessimistic scheme and read/write-locking mechanisms. No
security measures are used in Argus, and invocations are handled by the
message-passing method.

Clouds25 : A distributed system that operates with large-grain objects and
employs the passive object model. Two variations of the pessimistic scheme
are used, automatic and custom. Automatic implements typical read/write
locks. Custom on the other hand operates with semaphores or locks. Security
is maintained through the capability scheme, and requests are managed by the
direct invocation method.

Eden23 : Developed at the University of Washington in Seattle under the
supervision of G. Almes, A. Black, E. Lazowska, and J. Noe. Eden supports
large-grain objects using the fixed version of the active model. Security is
handled through the capability scheme, and the pessimistic method of syn
chronization is used. Object interaction is maintained through the message
passing method.

11.4. COMPONENT SOFTWARE

According to Ref. 26,

Component software addresses the general problem of designing
systems from application elements that were constructed indepen
dently by different developers using different languages, tools, and
computing platforms. The goal is to have end users and developers
enjoy the samehigh levels ofplug-and-play application interoperability
that are available to consumers and manufacturers of audiovisual
electronic components or commodity and custom integrated circuits.

The key technologies involved in component software include data ex
change models that allow data to be uniformly exchanged through drag and drop,
copy and paste (clipboard), or application program interface (API) calls; automa
tion, which allows applications to be programmed directly, structured storage,
which allows heterogeneous information to be organized and retrieved as logical
units; and an interface definition language that translates one object model into

www.manaraa.com

Advanced Programming Environments 289

another. Component software services, such as object linking and embedding 2.0
(OLE)27 and common object request broker (CORBA)28 are provided. The fol
lowing is a partial list of features provided by OLE:

• Automation: Allows applications to employ command sets that operate
within and across applications. For example a user can invoke a command
from a word-processing program that sorts a range of cells in a spread
sheet created by a different application.

• Object Linking and Embedding: Enables applications to be linked to data
objects within other applications. For instance a spread sheet table can be
linked to customized business reports, so as changes are made to this table
within the spread sheet application, all report documents are automatically
updated. Object embedding is the ability to embed an object within another
document without maintaining a link to the object's data source. In both
object linking and object embedding, applications supplying objects are
called OLE servers, while applications containing objects are called OLE
containers. An application can be both an OLE container and an OLE server.

• Visual Editing: Allows a user to create rich, compound documents easily,
incorporating text, graphics, sound, video, and other diverse object types.
It is unnecessary to switch between applications to create segments of the
compound document: The menus and tools of the container application
automatically change to the menu and tools of that object's original appli
cation, so that a user can edit an object in the context of the document,
without activating and switching to another application.

• Drag and Drop: Enables users to drag objects from one application win
dow to another and drop objects inside other objects.

• Nested Object Support: Enables objects to be nested in multiple layers
within other objects and establish links to nested objects.

• Storage-independent Links: Enables links to be maintained between em
beded objects not stored as files on disk.

• Adaptable Links: Maintains links between objects in many file move,
copy, and rename operations.

• Version Management: Objects contain information about the application
and version of the application that created them, which enables program
mers to handle objects created by different versions of the same applica
tion.

• Object Conversion: Objects can be converted into different types so that
different applications can be used with the same object. For example an
object created with one brand of spread sheet can be converted to be
interpreted by a different spread sheet application for editing.

www.manaraa.com

290 Chapter 11

• Optimized Object Storage: Objects remain on disk until needed and are
not loaded into memory each time the container application is opened.
The OLE has complete transacted object storage, supporting commits and
rollbacks of objects to disk to ensure that data integrity is maintained as
objects are stored in the file system.

11.5. PROGRAMMING ENVIRONMENTS FOR
CONCURRENT ENGINEERING

It becomes more and more common for the development of large software
systems to require concurrent participation of multiple team members, who in
many cases are geographically separated. This requires new programming envi
ronments to support sharing software artifacts and asynchronous and/or syn
chronous coordination among the team members.

Several programming environments have been proposed to support concur
rent engineering (e.g., Recse29 and PACpO). For example Recse provides the
following facilities:

• RCSTool: Allows users at different sites to access the Revision Control
system (RCS) at the same time.

• Mshell: A multiuser command interpreter so that multiple users can inter
leave their commands and share responses.

• MDebug: A multiuser debugging tool that allows multiple users to debug
a program at the same time by command interleaving and output sharing.

• Collaborative Software Inspector reSI): Allows multiple users to inspect
and annotate a program asynchronously. The tool then integrates anno
tated faults collectively and presents the integrated list to all users. This
tool provides a number of multimedia supports, such as audio annotations
and teleconferencing.

• MEdit: Allows a file to be edited by multiple users at the same time.
Concurrency control is achieved by locking at multiple granularities (e.g.,
at function or line level).

REFERENCES

1. Rich, C., and Waters, C. R. Programmer's apprentice (ACM Press, 1990).
2. Waters, C. R.IEEE Transactions on Software Engineering SE-ll:ll, 1296-1320 (Nov. 1985).
3. Smith, D. R., Kotik, G. B., and Westfold, S. J. IEEE Transactions on Software Engineering
SE-ll:ll, 79-103 (Nov. 1985).

www.manaraa.com

Advanced Programming Environments 291

4. Rubin, R V., Golin, E. J., and Reiss, S. P. IEEE Software 2:2, 73-79 (Mar. 1985).
5. Shu, N. C. Visual programming (Van Nostrand Reinhold, New York, 1988).
6. Ambler, A. L. "Forms: expanding the visualness of sheet languages." Proc., 1987 Workshop on

Visual Languages (Aug. 1987), pp. 105-17.
7. Kimura, T. D., Apte, A., Sengupta, S., and Chan, J.IEEE Computer 28:3, 27-35 (Mar. 1995).
8. Ambler, A. L., and Burnett, M. M. IEEE Computer 22:10,9-24 (Oct., 1987).
9. Reiss, S. P. IEEE Transactions on Software Engineering SE-ll:3, 276-285 (Mar. 1985).
10. Teitelbaum, T., and Reps, T. Communication ACM 24:9,563-573 (Sept. 1981).
I I. Hamilton, R, and Zeldin, S. IEEE Transactions on Software Engineering SE-2: J. 9-32 (Mar.
1976).

12. Repenning, A., and Sumner, T. IEEE Computer 28:3, 17-25 (Mar. 1995).
13. Karsai, G. IEEE Computer 28-3, 36-44 (Mar. 1995).
14. Roman, G. C., and Cox, K. C. "A taxonomy of program visualization systems." IEEE Computer
26:12,24 (Dec. 1993).

15. Stasko, J. T. IEEE Computer 23:9,23-29 (Sept. 1990).
16. Roman, G.-C. et al. Journal of Visual Languages and Computing 3-2,161-193 (June 1992).
17. Brown, M. H. "Zenus: a system for algorithm animation and multiView editing." Proc. IEEE

Workshop on Visual Languages., 4:9 (1991).
18. Burnett, M. M., Baker, M. J., Bohus, C., Carlson, P., Yang, S., and Zee, P. "Scaling up visual
programming languages." IEEE Computer. Vol. 28:3, 45-54 (Mar. 1995).

19. Chin, R S., and Chanson, S. T. ACM Computing Surveys 23, 91-124 (Mar. 1991).
20. Bernstein, P. A., and Goodman, N. ACM Computing Surveys 13, 185-221 (June 1981).
21. Cohen, E., and Jefferson, D. "Protection in the Hydra operating system. Proc., 5th ACM Sympo

sium on Operating Systems (Nov. 1975), pp. 141-160.
22. Banino, J. S., and Fabre, J. C. "Distributed coupled actors: a CHORUS proposal for reliability."

Proc., IEEE 3d International Conference on Distributed Computing Systems (Oct. 1982),
pp.128-34.

23. Tanenbaum, A. S., and Van Renesse, R ACM Computing Surveys 17:4,419-470 (Dec. 1985).
24. Liskov, B. Communications ACM 31:3,300-312 (Mar. 1988).
25. Ahamad, M., and Dasgupta, P. "Fault-tolerant computing in object-based distributed computing
systems." Proc., IEEE 6th Symposium on Reliability in Distributed Software (Mar. 1987),
pp. 115-25.

26. Adler, R M. IEEE Computer 28:3,68-77 (Mar. 1995).
27. Brockschmidt, K.Inside OLE 2 (MicroSoft Press, Redmond, WA, 1994).
28. OMG TC document 93.12.43 (Object Management Group, Framingham, MA, Dec. 1993).
29. Dewan, P., and Riedl, J.IEEE Computer 26:1, 17-27 (Jan. 1993).
30. Cutkosky, M., Engelmore, R., Fikes, R., Genesreth, M., Gruber, T., Mark, W., Tenenbaum, J.,
and Weber, J.IEEE Computer 26:1,28-37 (Jan. 1993).

www.manaraa.com

12

Other Selected Topics

Chapter 12 includes some other important subjects not discussed in previous
chapters; these include project management (Section 12.1), fault-tolerant system
design (Section 12.2), and discrete event simulation (Section 12.3).

12.1. PROJECT MANAGEMENT

Software project management is an intricate web of specifications, re
sources, measurements, milestones, documentation, and management. Project
inputs include specifications, resources and manpower; outputs include measure
ments, documentation, and the final product. The project manager obtains infor
mation necessary to produce an outline for the project team to follow, since it is
easy to accomplish a task outlined in detail. This outline should also include how
progress will be measured and the documentation that must be produced. How
ever even a detailed plan can change during the development of a product.
Furthermore after the project is completed, it may require maintenance or up
grading at a later date. This section outlines some steps to consider when manag
ing a software project. The term user applies to either an outside user or an in
house requester, such as the manager of a larger project. The term team refers to
the project manager's group of programmers and support personnel.

12.1.1. Manager's Role

The Soul ofaNew Machine illustrates amanager's role in real-world computer
development. It describes the manager's work load as heavy while producing
proposals and estimates, lighter in the middle while the project is being developed,
and heavy at the end when the manager is putting out fires and trying to meet the
deadline. During the middle part of the project, the manager serves as an interface to
the user (or upper levelmanagement) and takes care ofthe nontechnical operation of
theproject. Themanageralso acts as abufferto isolate the teamfrom problems thatdo
not directly concern it. This buffer allows the team to concentrate on the technical
aspect of the project. The manager is ultimately responsible for successful comple-

293

www.manaraa.com

294 Chapter 12

tion of the project. The manager must control the resources needed to complete the
project. If the project requires programmers, these employees must be responsible
only to that project's manager.

12.1.2. Defining the Problem

Project requirements must be defined before the manager or software team
does any work or further analysis. If the problem is not well-defined, a well
designed solution cannot be developed. If the problem is not formally stated in a
document, the user's expectation may be misunderstood. Such a document is
called the requirements document. The manager may have to assist the user in
developing the document.

The first section of the requirements document should be an overview of the
problem, since it is important to understand the application for which the soft
ware will be used. Such an overview provides information to help the manager
determine if there are potential conflicts between the problem and the proposed
solution. The second section should clearly state the problem so that the user and
the project manager can verify that the problem is understood by both parties.
Once the problem is identified, the document may outline other factors, such as
required performance, budget restraints, support required from the user, docu
mentation requirements, etc. This document should not outline methods used to
solve the problem; it can however outline interfaces desired and expectations of
the solution. At this point the manager decides if the project can be completed
given the identified constraints, such as budget, time, and performance required.
The user then reviews the document to verify that the problem identified is
correct and the solution is satisfactory.

12.1.3. Proposals

The project manager must now develop a proposal to convince the user to
do business with the project manager. Often the proposal is not an in depth study
of the problem because for large projects, a proposal could cost a software
developer considerable time and money. The depth of the proposal depends on
many factors; see Ref. 1. The proposal details what is required to accomplish the
project and how it should be done. The first proposal outlines tasks required and
resources needed. To permit a detailed estimate, each task is divided into small
manageable units; this division may use a work breakdown structure (WBS). The
WBS identifies various levels of a project. The top level is the title of the project;
it is designated as Level O. Level 1 further divides the project into subsections;
each subsection is further divided in a similar manner into smaller sections. This
process is repeated until each task and subtask is divided into a unit small enough

www.manaraa.com

Other Selected Topics 295

to assign to someone to be completed in a relatively short amount of time. It is
important for the project manager to detennine that the task has been completed.
The WBS may have several different implementations. For instance if the

project is very large, upper management may break it down to only the project
manager level; from there each project team makes its own WBS to subdivide the
task. If the project is smaller, the WBS may encompass the entire project and
break down all of the tasks. Once the WBS is developed, it is easier to estimate
resources and time required to accomplish the project.

12.1.4. Design

The direction the manger takes to solve a problem also depends on the
budget given to complete a task. The design chosen is based on the user require
ments and the budget. Several design methods are available; top-level design is
similar to the method used to develop the WBS: The problem is detennined, then
each major section is divided into a tree. This allows an abstract idea to become a
detailed implementation scheme by moving down the tree. As we descends the
tree, tasks become more specific components.

A bottom-up design approach is used when specifics of a situation are
known and must be integrated into a working model. If existing inputs or
data/software modules must be integrated, this is the best approach. A process
control system is also a good candidate for this approach.
The project manager may have to update initial estimates, including the

outputs expected, at this point and advise the customer. Another important point
for the manager to remember is breaking down the design into small components
that can be completed by a small group in a reasonable amount of time. Testing is
also considered at this point: The user or project manager should create an
acceptance test plan to outline tests to be applied to the system to verify that it
provides the promised services.

12.1.5. Programming

During the programming phase, the project manager's role is more that of a
typical manager. Hopefully during design, the problem was broken down into
sufficiently small parts for the programming project leaders to manage. The
project manager assures that testing is done, milestones are achieved, and docu
mentation is completed. If there are problems completing modules on time or
testing modules, the project manager may have to find personnel to assist a team
or authorize overtime work. The project manager may use an assortment of
CASE tools 1 to track the progress of the project (an advantage of many CASE
tools is that they provide testing schemes). Since the worst people for testing a
module are the ones who created it, the project manager should ensure that other

www.manaraa.com

296 Chapter 12

teams do the testing. Quality assurance is a large part of the manager's duties
during this phase, and by ensuring quality while the project is being developed,
many problems can be avoided.

12.1.6. System Testing

System testing is the point in the project when all system modules are
brought together. A good way of approaching testing is to bring together a few
modules for testing by using some simple interface routines that simulate the rest
of the system. This allows testers to verify that each module is working as
expected. As more modules are added to the system and tested, problems with
previously tested sections may arise. By putting the system together piece by
piece, it is easier to identify which modules are creating problems. There are two
general methods of assembling the final product: top down and bottom up. The
choice of one method over the other is similar to the decision in design. If
working from known inputs to the final results is easier, the bottom-up approach
is preferred. A gee-wiz GUI may be a better candidate for top-down testing, since
the whole point of a GUI is the interface.

Several CASE tools assist in testing and managing the testing process.) The
project manager must ensure that testing is documented and on time; once again
additional personnel or resources may have to be added. The manager also needs
to coordinate the availability of user-furnished items required for project testing;
for example if the user requires a video driver to work with a proprietary video
card, the project manager has to ensure that the user makes the item available on
time. Once all of the modules are working together, a final systems test is
accomplished to ensure the system is performing as specified; this includes
running the acceptance testing plan. Any problems found can then be corrected
before the user runs the acceptance testing plan.

12.1.7. Acceptance

This is the point in the project when the project manager has to prove the
product performs as promised to the user. The acceptance test plan that the user
has written or approved assures that everything the two parties agreed to have
been realized. This is also the time when required documentation is provided to
the user. If there are problems or questions, they are taken care of, and the user
may run the acceptance test again.

12.1.8. Operation

The operation phase starts with the installation of the product. Once the
system is up and running, additional problems may materialize. If a warranty is

www.manaraa.com

Other Selected Topics 297

provided (and it should be), the project manager may be the contact for repairs. In
operation new problems may arise that were not testable, and it is in a company's
best interest to fix problems they are responsible for. (The project manager
should also be aware that successful completion of this project can result in more
projects being awarded by the company.) Training and support for the new
product may also be temporarily the project manager's responsibility. If the user
has to be taught how to use a complicated system or requires only telephone
support, the project manager must delegate these tasks to people who know the
whole project. After the warranty, training, and support obligations (as specified
in the contract) are met, the project is formally completed. New maintenance or
upgrading should be handled as a new project.

12.1.9. Models

Models can facilitate managing software development even though a model
cannot accurately depict the real process. However a model gives the program
mer, manager, and user a common base for communication. Several popular
models assist in planning and managing software projects. The simple WBS
mentioned earlier may not be adequate for planning. Since it takes more time to
accomplish some tasks than others, each model attempts to take time into ac
count.

The Gantt model uses a series of lines to show start and completion times
for various tasks in a project (see Figure 12.1). Unfortunately this model does not
adjust for changes or delays during a project. The Critical Path method is used to

January February March April May June

Design

Document

Module A

Module B

Do this

Do thaI

etc .

Figure 12.1. A Gantt Chart

www.manaraa.com

298 Chapter 12

keep track of connections between activities. It allows the manager to see the
impact of one activity on another in the form of a graph. This model may have
weights associated with the paths to estimate completion times. The Pert chart,
related to both of the preceding models, represents an engineering process by
including best and worst case estimations of completion times with critical paths.
This type of chart has been used for many years in almost all engineering design
disciplines. The Design Net model is a promising new model that combines Petri
nets and AND/OR graphs in an attempt to model software engineering projects. It
appears to take into consideration the impact of modules on one another as well
as external factors.2 Some CASE tools provide integration of Pert-type charts
with design testing to assist in the whole software management process. Such
tools are helpful when managing very large projects.

12.2. FAULT-TOLERANT SYSTEM DESIGN

It is commonly assumed that the software components of computing sys
tems, unlike the more tangible hardware architecture, is immune from the effects
of physical punishment, so such terms as reliability and failure rates have no
meaning. While many users of personal computer software may back such an
assertion, it becomes increasingly invalid in a different scenario. The past several
decades have seen the emergence of real-time software applications, primarily in
computer control, originally fostered by the needs of the aerospace community.
A good example includes the software behind the fly-by-wire flight control
systems in modem-day commercial aircraft, such as the European airbus.3 This
software is part of a broad class of increasingly large and extremely complex
software whose job is to perform mission-critical functions under real-time con
straints. Therefore constantly changing input data, computing environments, or
requirements magnify the effects of error due to unexpected faults, which may
lead to the premature loss of complete systems or even human life. (This may
happen even if the software is operating correctly!) A classic case is the loss of
the Mariner spacecraft in 1962: A simple bar that indicated smoothed data was to
be used was omitted from the handwritten guidance equations and hence the
software in the computer fed by tracking radar. Thus during the ascent, the
computer incorrectly interpreted acceptable tracking data as wild fluctuations in
the booster rocket's behavior and sent unnecessary correction data, which was
the reason behind the vehicle's subsequent destruction by a ground safety officer.

Programming error is not the sole cause of software faults. By their very
nature, such faults are not anticipatable, since not every single case (i.e., input)
can be accounted for even in the best of simulators. Thus the idea behind the
programming methodology of fault-tolerance is not to design software with no
errors but to try to reduce errors that may arise by incorporating techniques that

www.manaraa.com

Other Selected Topics 299

allow acceptable, uninterrupted service. This is accomplished by handling faults
that remain in the primary software despite preventive measures. It usually helps
to discuss fault tolerance with respect to the following four phases: error detec
tion, damage assessment (the degree of system corruption), error recovery (get
ting the system back into an error-free state), and service continuation (ensuring
against the recurrence of nontransient faults).4 Fault-tolerant software systems
generally accomplish these tasks through multiple iterations of a given functional
process.s The two most common implementations of software fault tolerance
include N-version programming and recovery blocks.

12.2.1. N-Version Programming

The N-version programming employs N functionally equivalent versions of
a program created by N groups programming independently and using different
algorithms, languages, or translators.s Usually N = 3 at least, so that all different
versions can meet the same specifications; once executed majority voting logic
can be used to pass on the presumably correct result to the rest of the system. A
driver program (or executive segment) performs the controlling functions among
the N versions by (1) invoking all the versions, (2) waiting for all versions to
execute, and (3) comparing and acting on the N set of results.6

Some synchronization mechanism is required, usually through the use of the
familiar wait and send primitives. All versions wait and do not start execution
until a send is processed by the driver; then the driver waits until a send is
received from all versions; at this time a voting check can be done on the results.
This synchronization scheme must take into account different executions times of
various versions and be able to handle the occurrence of an infinite loop gener
ated by a fault in one of the versions. This special case highlights the use of an
alternative synchronization scheme whereby a voting check is performed at a
predetermined time, accommodating versions that may not be completed under
the given time constraint. This allows synchronization to be controlled by the
driver, and not by each version.

Each version communicates its results identically to the driver for use in a
voting check. Usually the results consist of a vector of values with status flags
that provide execution information. If communication traffic during the voting
check becomes too large, then alternative methods, such as employing a check
sum on the results, may be used.6 Each version must also have access to identical
input values. This can be done by allowing the driver to pass an input set to each
version. Since this method may suffer from too much communication overhead,
instead, the N-versions are sometimes allowed to share input from a common
global data structure on a read-only basis. In this case each version retains private
data in local structures, thus reducing subsequent execution time.

www.manaraa.com

300 Chapter 12

The central design problem in N-version programming concerns the voting
check implemented by the driver program. In simple applications (i.e., integer
calculations), an equality check can be used in the majority vote. However some
applications may employ different algorithms, which results in slight discrepan
cies among equally tolerable results. In this case "inexact voting" is used, per
haps employing a range check.6 A combinatorial algorithm can also be used here
to analyze differences among received results so that erroneous cases can be
eliminated.

Another design issue concerns the frequency of voting checks in a system5 :
If it is too low, it minimizes the inherent communications overhead but may have
to account for a larger divergence of numerical variables among more program
steps or to suffer from longer wait states. If the frequency is too high, it requires
additional commonality among program structures to allow comparisons, which
detracts from the goal of making each N version as independent as possible.
(Damage assessment is unnecessary if each version operates atomically.) Note
that the architecture of an N-version system follows the fault-tolerant phases
mentioned earlier.

Including a voting check ensures error detection. Disregarding erroneous
results shown by the check provides error recovery, and identifying minority
versions and action taken to prevent similar service disruptions ensures accept
able continuous service.6

Systems employing N-version programming have been constructed and an
alyzed. At the heart of US Space Shuttle avionics, five identical computers run
software using this fault-tolerant system approach7 ; university-based experi
ments have also confirmed the benefits of this approach for improving software
reliability. One study in particular showed a 20-fold improvement in the proba
bility of single-version failure using a three-version system.6

12.2.2. Recovery Blocks

Recovery blocks have successfully been used to ensure fault-tolerance in
software systems. A primary module is first executed that satisfies the task
according to specifications. Then an acceptance test is executed to determine if
the system is entering a nonacceptable state (i.e., to perform error detection). If
this is the case, the system returns to a restoration location, almost always before
execution of the primary module. At this recovery point, an alternative module of
different design and transparent to the rest of system (but compatible with the
same acceptance test) is activated in hope that a similar fault will not reoccur
(error recovery). Thus backward error recovery eliminates the need for damage
assessment. This can be done continually, with multiple standby spares provided
as such:

www.manaraa.com

Other Selected Topics

Establish recovery point
Primary module
Acceptance test
Alternate module
Acceptance test.

301

A more formal syntax for a recovery block scheme that also allows the nesting of
multiple recovery block structures follows6 :

ensure (acceptance test)
by (primary module)
else by (al ternate module 1)
else by (al ternate module 2)

else by (alternate module n)
else error

Since real-time systems require timely as well as accurate results, a timer
mechanism can also be implemented here to allow the invocation of timer
triggered interrupts if a module exceeds its predetermined time limit. This en
ables control to be passed to an alternative module.

In a system supporting recovery blocks, it is usually assumed that the
primary module is designed for maximum efficiency-perhaps using the fastest
sorting algorithms or most memory.7 Subsequent modules need not be similar in
design quality to the primary or even provide similar results! The only constraint
is that these results still be acceptable to the system (as defined by the acceptance
test); thus the recovery block scheme gracefully implements degrading software.
The acceptance test may also be split into several separate tests, performed
before as well as after execution of a module (i.e., to check input parameters
passed to it). Figure 12.2 shows a typical recovery block structure employing a
primary module P and a single alternative module Q under an executive program
(similar to the driver mentioned earlier) as described in Ref. 5:

The system executive in this example has a status module, a primary routine
failure flag A, and an alternate routine execution counter. Prior to entering the
recovery block, the status module checks flag A. If A has not been set (i.e., the
primary routine has not failed), the status module formats a call to the primary
routine and the recovery block proceeds normally. On entering the block, the
executive formats calls to both P and Q and sets the timer for the expected
maximum run time of P. Control passes to the primary call and process P is
executed. After P is complete, the acceptance test is run, and if the results are
acceptable and on time, control returns to the executive. The timer is reset
(loaded with the appropriate interval for the next operation) and another recov
ery block is called (or the previous one is repeated with the new data).

www.manaraa.com

302

No

Format calls
set timer

primtrycall: - - - - - - - - - - - -,,
Process P

No

Normal return
reset timer

Normal flow
Time out flow

Yes

Alternate call
Set Ilag A and
timer

~
Process 0

Normal return
reset timer

No

Chapter 12

Abort
return

Figure 12.2. Recovery block approach. Reprinted with pennission from Ref. 6. © 1986,
Prentice-Hall.

www.manaraa.com

Other Selected Topics

If the acceptance test rejects the results of p. or if the results are not furnished
within the allocated time. a transfer is made to the alternate call. The flag A is
set. the timer is reset for the expected maximum duration of Q. and the process
Q is executed. At the (timely) conclusion ofQ. the acceptance test is once again
run. and if passed. a normal return to the executive occurs and the timer is reset
as described above. When the flag A has been set. a different entry into the
recovery block occurs. The status module of the system executive examines the
alternate routine execution counter. If this counter is below an execution limit
(which may be either a system-wide fixed value or routine specific). the status
module increments the counter and formats a call to the alternate routine. If,
however, the alternate execution limit has been exceeded, the status module
resets flag A, resets the alternate execution counter, and formats a call to the
primary routine.
If the acceptance test rejects the results of Q, an abort condition exists and the
program exits differently. The abort exit will also be taken if the timer runs out
before a result is furnished by Q. The setting of flag A prevents execution ofQ
when this program does not furnish suitable results within the expected time.

303

It may seem that the stringent timing constraints encountered in real-time envi
ronments may prevent the use of alternative modules, but their inclusion and
execution times are carefully set to provide selected stability under worst case
conditions. The system is designed so that missing inputs or outputs result at
most in a transient disturbance from which the system can subsequently recover.5

The design of the acceptance test is a final critical point. Its function is to
check the acceptability of results from a module or more appropriately, the
system state after execution of a module.6 A recovery cache mechanism is
usually provided (by the underlying hardware) and special instructions, such as
establish recovery point, are accessible by the software. The cache aids develop
ment of acceptance tests by storing old values of variables that are made avail
able through the service of a read-only prior instruction. This may be helpful in
checking results of a sort operation by a module whose acceptance test can
perform a checksum operation on array elements before and after execution of
the algorithm.6 The recovery cache may also store variables updated by specific
modules, so that an acceptance test signals an error if it cannot access all vari
ables it thinks a module has updated; thus a cache can help detect errors in the
acceptance program itself. For example a valid design decision is usually to
impose the constraint that an acceptance test may not cliange the state of a system
during its execution, something the recovery cache itself can monitor.6

12.2.3. Recovery Blocks versus N-Version Programming

Recovery blocks differ from the N-version-programming scheme mentioned
earlier: One program runs at a time, and error detection is provided by a test

www.manaraa.com

304 Chapter 12

rather than comparison. Yet in the design phase each has its own strengths and
weaknesses: N-version programming offers the advantage that each program
version defines its own data structures for private data during successive program
executions.6 This allows for a greater degree of independence in the algorithms
selected for each version performing a given task. Problems can arise however.
One already alluded to earlier was the use of inexact voting when a range of
results has to be checked. This range may be difficult to calculate, and it can
change through successive executions of a version.6 Lastly a voting check may
be inappropriate for a problem with multiple or degrading (but still acceptable)
results.

The recovery block scheme has been criticized for using backward error
recovery. Such a requirement may be inexpensive for interacting processes or
impossible with the use of nonrecoverable objects.6 The scheme benefits from
the fact that a failing module is discarded only during execution when its outputs
puts the system in an erroneous state; otherwise the module can still be used in
subsequent executions. Also due to its nonparallel nature, this scheme can be
implemented with simpler hardware than that required by N-version program
ming.

12.2.4. Designing with Fault Trees

Though a list of all possible faults that can be encountered in a software
system is impractical, it is usually possible to generalize different classes of
failures in a top-down manner via software fault-tree analysis (SFfA).8 As a tool
fault trees can help identify conditions that may trigger the use of alternative
modules and if necessary; fault trees can also be used as documentation in a
formal design process. Specifically fault trees can aid in placing acceptance tests.

The use of SFfA was adopted from the use of fault trees in designing fault
tolerant hardware.s A tree is constructed by decomposing a top-level event
failure of a complete system-into distinct simpler events, such as failure of
particular subsystems, which are linked by AND and OR gates. This is done
continuously until it is possible to identify the failure of individual components
and events with calculable probabilities. Then the probabilities of higher events
are computed through the appropriate gate-AND implying multiplication of
probabilities and OR, addition.

Unfortunately when it comes to software, bottom-level (primal) events do
not have distinguishable failure probabilities but instead represent events whose
failure can be tested in real time. A top-level event represents complete function
al failure of a given module, while lower level events correspond to the module's
failure to meet individual functional requirements. Tree development stops when
failure can be sufficiently identified to be tested or replaced with an alternative

www.manaraa.com

Other Selected Topics 305

routine or when a certain level is reached, as defined by design specifications. By
examining the input/output (I/O), process requirements, and associated hierarchy
of specific procedures and subroutines (via external documentation), a designer
can develop the shape of the trees and determine the correct placement of an
acceptance test.

Reference 4 is another work related to fault-tolerant system design; it pre
sents a simplified approach to analyzing concurrent processes inherent in cyclic
real-time systems and classifying errors. Designing and modeling hierarchically
distributed fault-tolerant computer systems, where different fault-tolerant schemes
can be implemented at various individual levels, are discussed in Refs. 9 and 10.
Some mention must also be made of software reliability, which plays a central
part in evaluating the robustness of fault-tolerant software. Reference 11 de
scribes general probability models used to evaluate recovery block and N-version
implementations. Unfortunately gauging software reliability is not a simple mat
ter using any of the methods available. 12

The ability to use mathematical proofs to ensure that a program follows
specifications depends on which environmental aspects the designers model in
their system as well as the depth of their understanding of (1) the formal language
used in the specs and (2) the application itself. Formal testing on the other hand is
commonly cited as having only the ability to establish the presence of errors, but
not their absence. Since fault-tolerant techniques presented here cannot assure
perfection either, how to rate the safety of critical systems controlled by software
is an open issue. Some US government agencies, such as the Federal Aviation
Administration, classify design failures as nonquantifiable errors, totally avoid
ing specification requirements or quantitative measurements of reliability. Refer
ence 12 suggests limiting the role of software in high-risk applications to perform
not too critical types of functions, making sure that software reliability can be
demonstrated prior to system deployment. While the only remaining course may
be to study the effects of design compromise between complexity and reliable
operation, many vendors and users of such software systems are hesitant to
release statistical information on failures due to industry competition and fear of
public reaction. In any event it seems that further refinement and standardization
of fault-tolerant techniques will allow software at least to perform better tasks
either too laborious or impossible for human beings.

12.3. DISCRETE EVENT SIMULATION

In a discrete event simulation system, changes in the internal state of the
system take place at discrete points in simulated time when an event occurs. The
system can either be synchronous or asynchronous. In the first case, events are
synchronized with a global clock; in an asynchronous discrete event simulation

www.manaraa.com

306 Chapter 12

system, each process proceeds according to its own clock without global syn
chronization.

The following types of data structures are used in sequential simulation:

• State Variables: Describe the state of the system at a particular time.

• Event List: Shows all pending or scheduled events not yet processed in the
system.

• Global Clock: Shows how far the simulation has progressed.

Each event in the system should contain information indicating when it is to be
processed. This information is contained in a field called the time stamp for the
event. Once an event has been processed, a new event with a higher valued time
stamp (if it exists) can be scheduled for the system to process.
In a concurrent environment, each simulation process is implemented as a

logical process (LP), and a set of LPs communicate through message passing.
While this works well for ordinary processes, problems may arise in a concurrent
simulation system. For example suppose event EI of process LPI has time stamp
10, and event E2 of process LP2 has time stamp 20. If LPI schedules event E3
for process LP2 at a time stamp less than 20, then this can effect the execution of
E2. The output of LP2 can be different because E3 may modify some state
variables used by E2. l3 Therefore if a process depends on the outcome of event
EI to handle another event E2, then El must be processed before E2 or a
causality error occurs. This is one of the most difficult problems in concurrent
discrete event simulation because it is difficult to know· if the event with the
lowest time stamp in the event queue is indeed the next event in the process.

A concurrent discrete event simulator can be implemented in two ways:
conservatively or optimistically. The consecutive approach avoids causality er
rors at any cost: It processes an event only if it is absolutely safe to do so. An
event is considered safe only if all events it depends on have already been
executed. The optimistic approach proceeds with any event, then decides if the
event has caused a causality error; if it did, then the simulator recovers. This
implies that each logical process must store its own history so that the process
can revert to some previous state if a causality error occurs.

One popular programming language developed for simulation is MODSIM,14
which provides constructs available in most object-oriented programming lan
guages. Unlike these languages however, functions (or methods) are called in
either of two forms. An ASK call resembles a procedural call: When executing an
ASK statement, it requests an object to invoke the method; the calling code waits
for the method to finish execution before proceeding further. A TELL statement is
similar to an ASK except that the TELL does not wait for completion of the
invoked method before proceeding.

www.manaraa.com

Other Selected Topics 307

The concept of simulation time is supported and maintained automatically
in MODSIM. We are concerned only with simulation time when an event occurs
that may change the state of objects in the model. Once all activities scheduled
for a particular simulation time are completed, the simulation clock is advanced
to the next point in simulation for which an activity is scheduled. To keep track
of scheduled activities, MODSIM maintains a pending list on which the activity at
hand is first. Each object also keeps its own list, thereby creating a two-dimen
sional structure.

There are in general two approaches to implementing discrete event simula
tion. One is event-oriented, in which individual routines are written to describe
each discrete event in the operation of a system. This approach is fine in smaller
models, but as anticipated, it becomes difficult to follow in larger models. For
larger models, the process-oriented approach is better, since it allows all the
behavior of an object in a model to be described in one or more TELL methods.
Also once the actions of the class of objects are gathered together in an object,
the simulation program can create multiple and concurrent instances of the object
instance, and process objects can interact. This approach uses object-oriented
programming to its full capacity to simplify the tasks at hand and handles them in
a simple manner in implementing simulations. Another advantage of this method
is that since its statements are expressed sequentially, it is almost analogous to
the system being described.

The TELL method supports the process approach to simulation. The WAIT
statement, an option of the TELL method, specifies the simulation time to elapse.
When aWAIT statement is encountered, the TELL method of execution is sus
pended and resumes after the allocated amount of simulation time has elapsed.
For synchronous activities MODSIM uses the WAIT FOR statement: One activity
starts a second activity, then suspends its execution and waits for a period of
simulation time for the second activity to be completed before resuming execu
tion. A TERMINATE statement terminates a TELL method. The TERMINATE state
ment is recursive: It not only terminates the method that invoked it but also
terminates all methods related to the terminated TELL method.

Some processes must wait for a certain condition before being executed or
proceeding in a program. This need is fulfilled by the TriggerObject object type in
conjunction with the WAIT FOR statement, which permits a pause in the method as it
waits for the certain condition to occur. MODSIM also provides for an Interrupt
procedure that is different from the TERMINATE method. The Interrupt procedure is
usedfromoutside an object's time-elapsing method to wake up the method before it
completes the WAIT. The TERMINATE method is used from inside a process object's
TELL METHOD to stop premature execution of the method.

Objects in MODSIM can also be "grouped"; i.e., a series of events can be
scheduled to occur at a specific time. These events are untyped, since they can
hold a variety of types. Objects can be removed from, or added to, a group. There

www.manaraa.com

308 Chapter 12

is no limit on the number of groups an object can belong to. Another provision in
MODSIM is Resource objects, which are part of the run-time library. Resource
objects are very useful for acquiring and distributing resources; they are very
easily modified, since they are objects. A ResourceObj provides an asynchro
nous-blocking mechanism; that is it allows simulation time to elapse while wait
ing for a resource. Resources are a finite pool of elements that may be acquired
for some period of simulation time. Once acquired by an object, a resource is
unavailable for subsequent requests until it returns to the resource pool. If re
sources are available, they will be assigned to the requesting object immediately;
otherwise requested objects are queued; the calling method is blocked until a
resource is available.

12.4. INTERNET PROGRAMMING

The World Wide Web (also known as WWW, or the Web) is a global-area
hypertext information repository on the Internet, which is the physical layer of
communications which connects millions of computers around the world. Based
on the TCP/IP protocol, the Internet uses packet switching for data communica
tion. The Web is an application software which sits on top of the Internet. It
employs hypertext links to connect one document to other documents on the Web
with anchors in a document. Figure 12.3 shows the concept of hypertext link.

The Web can access multiprotocol and multimedia information according to
the client/server model. Since the Internet has been introduced, different kinds of
services (protocols) have been proposed. Before the Web was introduced, users
had to utilize different tools to access different kinds of services such as electron
ic mail, file transfers, news, remote connections, and so on. One of the advan
tages provided by the Web is that those services can be accessed with a set of
protocols under a unified architecture:

• HTTP (Hypertext Transfer Protocol): the standard protocol that the Web
clients and servers use to communicate with hypertexts.

• Anchors

Links

Documents

Figure 12.3. Connections of hypertexts.

www.manaraa.com

Other Selected Topics 309

• SMTP (Simple Mail Transport Protocol): a protocol for sending and re
ceiving electronic messages.

• FrP (File Transfer Protocol): a common method of transferring files
across networks.

• Gopher: a versatile menu-driven information service.

• NNTP (Network News Transfer Protocol): a common method by which
articles over Usenet can be transferred.

• Telnet: a program which allows users to remotely use computers across
networks.

• WAIS (Wide Area Information Services): a service that allows users to
intelligently search for information among databases distributed through
out the Internet.

With hypertext links and multiprotocol communication, the diverse services
offered on the Internet can now be grouped together in one place. Figure 12.4
shows the functions of the Web on the Internet.
The Uniform Resource Locator (URL) is a standard way to represent differ

ent documents, media, and network services on the World Wide Web. A URL is
represented in a particular syntax to express a location of resource. The following
are some examples:

• http://www . uci . edu /WWW / library / introduction. htrnl:
This URL refers to a Web server using the Hypertext Transfer Protocol.
The name of the Web server is www. uci. edu and there exists a file
called introduct ion. htrnl in the WWW /1 ibrary directory.

• ftp: / / ftp. uci. edu/pub/paper. ps: This URL refers to a host
called ftp. uci . edu using the File Transfer Protocol (FrP). The URL
refers to the pub directory and the paper. ps file within the directory.

World Wide Web

HTIP I SMTP I FTP I Gopher I NNTP I Telnet I WAIS

Internet

Figure 12.4. Functions of the Web.

www.manaraa.com

310 Chapter 12

The HyperText Mark-Up Language (HTML) is a simple markup language
used to create hypertext documents on the Web. HTML is not a page-layout
language. Instead, HTML gives users a way to describe the structure of a docu
ment by indicating the headings, the emphasis, and the links to other documents
and so forth. HTML is defined based on the Standard Generalized Markup
Language (SGML). SGML is an international standard for data encoding which
is vendor-independent. By tagging data with its role and useful identifiers, SGML
allows information to be readily searched and reused. An SGML document has
three types of information: data, structure, andformat. The data in a document
may include text, graphics, images, sound, and video which can be digitized as
well as some information that does not itself appear on the printed page. The tags
in SGML identify the structure of a document: the headings, sub-headings,
paragraphs, bullet lists, and other components. An SGML document has an
associated document type definition (DTD) that specifies the structure of the
document. The latest DTD for HTML can be located at http://www.w3.org/hy
pertext/WWW/MarkUp/MarkUp.html.

To denote the various elements in an HTML document, tags are used. An
HTML tag consists of a left angle bracket «), a tag name, and a right angle
bracket (». Tags are usually paired (e.g., <HTML> and </HTML» to start
and end a tag instruction. The end tag looks just like the start tag except a slash
(/) precedes the text within the brackets. Some elements, such as the Line Break
element, can have just one tag,
. The element tags are case-insensitive.
<TITLE> is equivalent to <title>. Every HTML document should contain
standard HTML tags. Each document consists of the head text, the body text, and
a set of tags to mark the document structure. The head contains the title, and the
body contains the actual text that is made up of paragraphs, lists, and other
elements. Following is a simple example:

<html>
<head>
<TITLE>A Simple HTML Example</TITLE>
</head>
<body>
<Hl>Welcome to HTML World</Hl>
<P>Hello World. < / P>
</body>
</html>

The old version of HTML defines only a single mechanism for inserting
media into HTML documents using the tag. New versions of HTML
replace the tag with the <OBJECT> tag. A tag <OBJECT> provides
a general solution for dealing with images, audio, video, applets, plug-ins, and

www.manaraa.com

Other Selected Topics 311

media handlers while supporting effective compatibility with existing browsers.
Using <OBJECT>, an HTML author can specify the data, and/or proper
ties/parameters to initialize the objects to be inserted into an HTML document,
as well as the code that can be used to display/manipulate the data. This specifi
cation extends HTML to support the insertion of multimedia objects including
Java applets, Microsoft Component Object Model (COM) objects (e.g. ActiveX
Controls and ActiveX Document embeddings), and a wide range of other media
plug-ins.

VRML stands for Virtual Reality Modeling Language. It is a file format for
describing 3D objects and worlds on the World Wide Web. The first version of
VRML generates virtual worlds with limited interactive behaviors. These worlds
can have hyper-links to other worlds, HTML documents, or other valid Multi
purpose Internet Mail Extension (MIME) types. MIME provides a way for
computers to exchange multimedia information using the Internet mail standards.
It specifies image, audio, text, video, and other multimedia and binary file for
mats. A Web server uses file extensions to specify various MIME types to a
Web browser. When the user selects an object with a hyper-link, the appropriate
MIME viewer is launched. When the user selects a link to a VRML document
from within a correctly configured WWWbrowser, a VRML viewer is launched,
where VRML viewers are applications for navigating and visualizing the Web.
More recent versions of VRML allow animations, scripting, enhanced static
worlds, and prototying.
The first version of VRML was created by Silicon Graphics, and was based

on the Open Inventor file format. At the highest level of abstraction, VRML is
just a way for objects to read and write objects themselves. VRML defines a set
of objects useful for doing 3D graphics. These objects are called nodes. A node
may be a cube, a sphere, a texture map, a transformation, etc. Nodes are arranged
in hierarchical structures called scene graphs. A scene graph consists of more
than one node and it defines an ordering for the nodes. A scene graph has a notion
called state which means that the nodes that appear earlier in the world can affect
nodes that appear later in the world.

Parameters are used by a node to distinguish itself from other nodes of the
same type. For example, each Cube node may have a different width, and
different texture map nodes may contain different images as the texture maps.
These parameters are called Fields. A name can identify this node. Naming nodes
and referring to them provides information about what is in the world. Nodes do
not have to be named, but if they are named, they can have only one name.
However, names do not have to be unique. An object hierarchy is implemented
by allowing some nodes to contain other nodes. Parent nodes traverse their
children in some order during rendering. Nodes that may have children are
referred to as group nodes. Group nodes can have zero or more children. The
syntax of a node definition in VRML is shown below:

www.manaraa.com

312 Chap~rl2

DEF objectname objecttype {fields children}

Only the object type and curly braces are required; nodes mayor may not have a
name, fields, or children. For example, the following file contains a simple world
defining a view of a cylinder, lit by a directional light:

#VRML VI. 0 ascii
Separator {
DirectionalLight {
direction 0 0 -1 # Light shining from viewer into

world
}
PerspectiveCamera{
position -8.62.15.6
orientation -0.1352 -0.9831 -0.1233 1.1417
focalDistance 10.84

}
Separator { # The red cylinder
Material {
di ffuseColor 1 0 0 # Red

}
Translation { translation 3 0 1 }
Cylinder {
radius 4
height 3
}

The Common Gateway Interface (CGI) is a means for interfacing external
applications with information servers, such as HITP or Web servers. A plain
HTML is static, which means a text file doesn't change. A CGI program, on the
other hand, allows the server to execute external applications depending on a
client's request. CGI also makes new documents based on the client's request.
For example (Figure 12.5), a database can be used on the Web to allow clients
around the world to query it. Basically, it is necessary to create a COl program
executed by the Web to transmit information to the database engine, and to send
the results back to the client. A COl program is written in a programming
language such as

• Compiled languages: c, c++, FORTRAN, ADA

• Interpreted languages : PERL, TCL, UNIX shell

www.manaraa.com

Other Selected Topics

client

request 1 1infonnation
server

1 1
COl

I run Database

E§J
Figure 12.5. COl.

313

COl programs are activated by an anchor tag. As an example, the anchor tag
to execute the CGI script videl_page on the server www. uci. edu can be:

<A HREF= I/http://www . uci. edul cgi-bin/videl_
pagel/>Videl_page

When the web server processes a request to fetch a file, and if the corresponding
COl file is in the server's nominated cgi-bin directory, then the script will be
run on the server. If the file is not executable then an error will be reported.

A CGI program usually returns an HTML page or image to be displayed as
the result of its execution. When a CGI script file executes it may access environ
ment variables to discover additional information about the process that it is to
perform. The first line of the returned data must be of the form Content
type: text/html, which is an HTML page, or of the form Content
type: image I gi f which is a gif image. The following is a simple COl script
on a UNIx-based system to return the name of the current system:

#! Ibinl shl
echo Content-type: text/html
echo
echo
echo 1/ <HTML> 1/

echo 1/ <HEAD> 1/

echo 1/< I HEAD> 1/

www.manaraa.com

314 Chapter 12

echo "<BODY>"
echo "<H2> Display the name of the current sys
tem:</H2>"
echo "<PRE>"
uname
echo "</PRE>"
echo "< / BODY> "
echo "< / HTML> "

Note that on a UNIX system the first line is #!/bin/sh and the file is executable.
JAVA is an object-oriented programming language developed by Sun. It

shares many syntactical similarities with c and c+ +. But it is not based on any
of those languages, neither any effort has been made to make it compatible with
them. JAVA was originally created because c+ + proved inadequate for certain
tasks. JAVA has several features which c+ + doesn't have; these include garbage
collection and multi-threading; and JAVA does not include some features that
c+ + supports like multiple inheritance and operator overloading. JAVA was
designed to allow for secure execution of code across a network. There are no
pointers in JAVA. JAVA programs cannot access arbitrary addresses in memory.
Furthermore JAVA was designed not only to be cross-platform in source form like
c, but also in compiled binary form. Since a complied binary form is impossible
across different processor architectures, JAVA is compiled to an intermediate byte
code which is interpreted on the fly by the JAVA interpreter. Thus in order to port
JAVA programs to a new platform an interpreter and a few native code libraries are
needed.

As a programming language, JAVA is simple, object-oriented, platform inde
pendent, secure, high performance, and multi-threaded:

• Simple: JAVA omits many features of c+ + like operator overloading (al
though the JAVA language does have method overloading), multiple inheri
tance, and extensive automatic coercions. Instead, automatic garbage col
lection is added to simplify the task of JAVA programming. A common
source of complexity in many c and c+ + applications is storage manage
ment: the allocation and freeing of memory. Due to automatic garbage
collection the JAVA language not only makes the programming task easier,
it also dramatically cuts down bugs.

• Object-Oriented: Almost everything in JAVA is either a class, a method, or
an object.

• Platform Independent: In general, a network consists of different kinds of
systems with different kinds of CPUs and operating system architectures.
To enable a JAVA application to execute on any platform in a network, the

www.manaraa.com

Other Selected Topics 3/5

compiler generates an architecture-neutral object file format: the compiled
code is executable on many processors, given the presence of the JAVA

runtime system. JAVA programs are compiled to a byte-code format that
can be read and run by interpreters on many platforms including Windows
95, Windows NT, and Solaris 2.3.

• Secure: JAVA is intended for use in networked/distributed environments.
Therefore, JAVA code can be executed in an environment that prohibits it
from introducing viruses, deleting or modifying files, or otherwise per
forming data destroying and computer crashing operations.

• High Performance: The byte-code format was designed to generate ma
chine codes, so the actual process of generating machine code is generally
simple. Efficient code is produced: the compiler does automatic register
allocation and some optimization when it produces the byte-codes.

• Multi-Threaded: JAVA is inherently multi-threaded. A single JAVA program
can have many different threads proceeding independently and continu
ously.

JAVA makes it possible for programs to be distributed across the networks
and run on many different kinds of computers. This allows executable programs
to be download from a Web server to any Web client. JAVA has a way to include
inline sound and animation in a web page. JAVA also lets users interact with a
web page. Instead of just reading it and perhaps filling out a form, users can now
play games, calculate spreadsheets, chat in real-time, get continuously updated
data, and so on. Here are just a few of the many things JAVA can do for a web
page:

• Inline sounds that play in real-time whenever a user loads a page

• Music that plays in the background on a page

• Cartoon style animations

• Real-time video

• Multiplayer interactive games

Figure 12.6 shows the JAVA operations between a web server and a web client.
JAVA applets are designed to be small, fast, and transferable over network

resources. JAVA applets are compiled JAVA programs that are run through a Web
browser that supports JAVA. An applet can display graphics, play sound, and
manipulate data. Because applets are small, they can be downloaded and exe
cuted very fast. JAVA applications are standalone programs written in JAVA and
executed independently of the browser. The execution is done using the JAVA

interpreter.

www.manaraa.com

316

Web client

interface

Chapter 12

Figure 12.6. JAVA operations.

JAVASCRIPT is an easy-to-use, open, cross-platfonn scripting language. While
JAVA is compiled, relatively complex, and distinct from HTML, JAVASCRIPT is
interpreted, simple to use and compatible with HTML. JAVASCRIPT has many
built-in objects that require minimal efforts for creation. Because JAVASCRIPT is
interpreted, all object references are checked at runtime. JAVA applets can be
called from an HTML document with the use of an <APPLET> tag where the
actual complied code resides in a separate file. JAVASCRIPT can be embedded
directly into the HTML code.

REFERENCES

1. Rakos, J. J. Software project management for small-to-medium-sized projects (Prentice-Hall,
Englewood Cliffs, NJ, 1990).

2. Liu, L.-C., and Horowitz, E. IEEE Transactions on Software Engineering 15, 1280-1293 (Oct.
1989).

3. Voges, U. Software diversity in computerized control systems (Springer-Verlag, New York,
1988), pp. 85-104.

4. Anderson, T., and Knight, J. C. IEEE Transactions on Software Engineering SE-9:5, 355-364
(May 1983).

5. Pradhan, D. K., ed. Fault-tolerant computing: theory and techniques, vol. 2 (Prentice-Hall,
Englewood Cliffs, NJ, 1986), pp. 658-95.

6. Lee, P. A., and Anderson, T. Fault tolerance: principles and practice (Springer-Verlag, New
York, 1990), pp. 205-41.

7. Chien, P. Compute 13:8,96 (Aug. 1991).
8. Leveson, N. G., and Stolzy, J. L. IEEE Transactions on Reliability R-32:5, 479-484 (Dec.
1983).

9. Shieh, Y.-B., Ghosal, D. Chintamaneni, P. R., and Tripathi, S. K.IEEE Transactions on Software
Engineering 16,444-457 (Apr. 1990).

10. Neumann, P. G. IEEE Transactions on Software Engineering SE·12, 905-919 (Sept. 1986).
11. Scott, K. R., Gault, J. W., and McAllister, D. F. IEEE Transactions on Software Engineering
SE-13, 582-592 (May 1987).

www.manaraa.com

Other Selected Topics 317

12. Littlewood, B., and Strigini, L. Scientific American 267:5, 62-75 (Nov. 1992).
13. Fujimoto, R Communications of the ACM 33:10,30-53 (Oct. 1990).
14. Belanger, R, Donovan, B., Morse, K., and Rockower, D. MODS1M 11: The language for object

oriented programming, reference manual (CACI Products, San Diego, CA, 1990).

www.manaraa.com

Index

ACTOR,25
Actor, 94
Abstract data type, 47
Abstraction, 66
ADB/I,119
Agent, 25
Agentsheets, 285
Algebraic specification, 47
Amoeba, 287
Argus, 288
Association, 19
aggregation, 19
generalization, 19
many-to-many, 19
many-to-one, 19
multiplicity, 21
one-to-many, 19
one-to-one, 19
set, 19

Atomicity, 286
Attribute, 33
Automatic program synthesis, 207
Automatic test case generation, 249

Backtrack, 191
BAGl,183
Black box testing, 231, 235
Booch methodology, 80
Bottom-up integration, I
Boundary interior path testing, 235
Boundary value analysis, 235
Boundness, 57
Branch coverage, 235
Breakpoint, 142

C++,97
Cactis, 263
Candidate key, 21
Capability, 287

CASE tools, upper, 86
CATS, 255
Causality error, 306
CGI,312
Change management, 261
CHI,283
Cia, 256
Class, 10
descriptor, 21
diagram, 19
hierarchy,
join, 21
Clause, 30
Clichi,282
Client, 146,157
Clouds, 288
Code auditing, 255
Cohesion, 66
Communicating Sequential Processes, 60
Communication,
asynchronous, III
synchronous, III

Communication transparency, 109
Component software, 288
COMPOSE, 198
Conceptual model, 9
object-oriented, 9
procedure-oriented, 9

Concurrency flow chart, 252
Concurrent engineering, 290
Concurrent Prolog, 113
Concurrent Smalltalk, 119
Configuration management, 261
Conjunct, 30
Conjunction, 30
Conservativeness, 57
Constraint, 21
Constructor, 99
Contract, 5

319

www.manaraa.com

320

Control flow diagram, 69
COOL, 119
CORBA,289
Cornel Program Synthesizer, 285
Coupling, 66
Coverage analysis, 256
Critical path model, 297
Cscope,256
CSP, 119
Cyclical debugging, 251

Database, 33
Database programming language, 183
Data definition language, 33
Data flow design methodology, 67
real-time extensions, 68
Data flow diagram (DFD), 67
Data flow testing, 236
DATRIX, 258
Deadlock freeness, 55
Decision table, 76
Declarative programming, 181
Decomposition, 65
Deductive database, 33
Deductive law, 25, 35
Deductive program synthesis, 207
Deductive theorem proving, 190
Definite database, 35
Delegation, 95
Design, I
Design Generator, 88
Design methodologies, 65
Design recovery, 275
Desire Vision, 277
Destructor, 99
Dinning phisopher problem, 120
Discrete event simulation, 305
Disjunct, 30
Disjunction, 30
Distributed programming languages, 109
Distributed system,
strongly, 96
weakly, 96

Domain error, 231
Domain testing, 242
Driver, I
Dynamic analysis tool, 256
Dynamic model, 77

Eden, 288
EMERALD, 119

Entity, 19
Entity-relationship model, 19
Entity set, 19
Error-based testing, 231, 242
ESE,262
Event, 77

Fault tolerance, III, 117,298
FIFO structure, 156
File locking, 155
Finite state machine, 52
First-order language, 30
First-order theory, 31
Flecse,290
Flowchart, 76
Form/Formula, 285
Forms, 285
Friend function, 98
Function, 30
Functional model, 77
Function overriding, 101

GAMMA,183
Gantt model, 297
GIST, 183
Guarded Hom clause, 116

Halstead program length metric, 258
HiPAC,78
HIPO,73
HTML,309
HTTP,308
HyperCard, 284
HyperTalk, 284

IDE, 140
Implementation, I
Incremental testing, 271
Indefinite database, 35
Inference rule, 31
Generalization, 31
Modus Ponens, 31

Information hiding, 66
Inheritance, 10, 94,100
multiple, 94

Inhibitor, 51
Instance, 10
diagram, 19
variable, 10

Integration, I

Index

www.manaraa.com

Index

Integrity constraint, 25,33,20 I
INTERCOL, 73
Interpretation, 30
Interprocess communication, 97
Invariant, 24
ISTAR,5

JAVA, 314
applet, 315
script, 316

KBEmacs,281
Knowedge-based software engineering, 281

Larch shared language, 48
Life cycle, I
Life cycle models, 1
contractual, 5
rapid-prototyping, 3
spiral,3
waterfall, 2

L1NDA,116
Lint, 256
Literal,30
Liveness, 55, 57
Logical axiom, 31
Logical connector, 30
Logic programming, 190
Lprof,257

Maintenance, I
adaptive, 2
corrective, 2
perfective, 2
Marked graph, 52
McCabe complexity metric, 257
Member, 98
Member function, 98
Message, 10
Method, 10
MicroScope, 277
M1ME,311
Miss-path error, 231
Modal, 133, 134
Model,30
Modeless, 133, 134
Modsim,306
Modularity, 66
Module, 65
Motif, 146
Mutant, 248

321

Mutation testing, 248
Mutual exclusion, 55

NIL,109
Normal form,
Prenex,30
Skolem,30

Nvcc,257
N-version programming, 299

Object, 10
active, II, 94
diagram, 19
embedding, 289
equivalence, 10
functional, 93
identity, 10
imperative, 11,93
instance, 10
library, II
linking, 289
modeling, 18
real-time, 24
reflective, 24
time-sensitive, 24

Object-oriented algorithm, 82
Object-oriented database, 194
Object-oriented declarative programming,

186
Object-oriented design (000) method, 88
Object-oriented language, strongly typed, 95
Object-oriented logic system, 41
Object-oriented paradigm, II
Object Windows, 133
ObjV-Lisp, 25
OCCAM,121
OLE, 289
OMT, 19,78,81
Open Look, 146
Operator overloading, 103

PACT,290
PAISLEY, 60
Paradigm Plus, 89
Partial correctness, 55
Partial failure, 111
Path coverage, 235
Path steering, 255
Pavane,285
Pecan, 285
Per Chart, 298

www.manaraa.com

322

Petri net, 49
free choice, 52
generalized, 51
marked, 57
timed, 52

Pipe, 155
Place, 49
Predicate, 30
Probe effect, 251
Process activation table, 71
Process description language, 67
Production system, 59
Program bandwidth, 258
Program instantiation, 220
Programmer's Apprentice, 282
Programming by demonstration, 285
Programming object base, 265
Program schemata, 218
Program transformation, 216
Program verification, 231, 232
Program visualization, 285
Project management, 293
PROLOG, 190
Proper termination, 55, 57
Prototype, 3
PSA,76
Pseudo code, 76
PSL,76

Quantifier
existential, 30
universal, 30

QUEL,194

Ray tracing, 89
Reachability, 57
set, 57
tree, 57

Recovery block, 300
Reduced concurrency graph, 255
Refinement, 65
Reflection, 24
Relation, 33
Relational database, 33, 194
Relationship, 19
Remote procedure call, 115
Rendezvous, 115
Requirements, I
Resolution principle, 31
Resolution refutation theorem proving, 31
Resolution refutation tree, 32

Reverse engineering, 274
Revision, 262
REVS, 76
Rewriting rules, 216
Risk minimization, 3
Role, 21
RSL,76

Safety,55
SAMOS, 77
sees, 264
Scene graph, 31 I
SDAT,76
Sequent, 208
Serializability,286
Server, 146, 157
SETL, 182
Show-and-Tell, 285
SMALLTALK,104
Socket, 157
datagram, 158
stream, 158

Software fault tree, 304
Software maintenance, 261
Software metrics, 257
Software reliability, 305
Software reuse, 220
Specifications, I
Spreadsheet programmillg, 285
SR,118
SSA,76
Statement coverage, 235
State transition diagram, 69
Static analysis tool, 255
StP, 86
StP/OMT,88
Structural abstraction, 16
Structural testing, 231, 235, 236
Structure chart, 76
Stub, I
Subclass, 10
Substitution, 32
Symbolic execution, 231, 233
System specification language (SSL), 72
Synchronization,97, III

Tango, 285
Temporal logic, 55
Temporal operator, 56
Term, 30
Theorem, 31

Index

www.manaraa.com

Index

Theorem proving, 31
resolution refutation, 31

Token, 49
Top-down integration, I
Towers of Hanoi problem, 106
Traceability,263
Tracing, 257
Transaction analysis, 68
Transform analysis, 68
Transformational program synthesis, 210
Transformation rules, 209
Transition, 49
Trigger, 202
Tunning, 257
Tuple, 33
TurboCASE, 87
Type,94

Unifiable, 32
URL,309
Use.It, 285

Variation, 262
VDM,60
Verification of formal specification, 54
Version management, 262

Very high level programming, 181
View, 202
Virtual function, 101
Visual Basic, 284
Visual C++, 133
Visual programming, 284
environment, 284
language, 284

The v language, 183, 283
VRML,311

Well-formed formula. 30
closed,30

White box testing, 231
Wide-spectrum language, 217, 283
Widget, 146
Windows, 129
Work Breakdown Structure (WBS), 294
World Wide Web (WWW), 308

XLIB,146
X toolkit, 146
X-Windows, 146

Zenus, 285
The Z language, 35

323

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

